
C H A P T E R

12
THE MARKOV CHAIN MONTE CARLO

METHOD: AN APPROACH
TO APPROXIMATE COUNTING

AND INTEGRATION

Mark Jerrum Alistair Sinclair

In the area of statistical physics, Monte Carlo algorithms
based on Markov chain simulation have been in use for
many years. The validity of these algorithms depends cru-
cially on the rate of convergence to equilibrium of the
Markov chain being simulated. Unfortunately, the classical
theory of stochastic processes hardly touches on the sort of
non-asymptotic analysis required in this application. As a
consequence, it had previously not been possible to make
useful, mathematically rigorous statements about the qual-
ity of the estimates obtained.

Within the last ten years, analytical tools have been
devised with the aim of correcting this deficiency. As well
as permitting the analysis of Monte Carlo algorithms for
classical problems in statistical physics, the introduction of
these tools has spurred the development of new approxi-
mation algorithms for a wider class of problems in combi-
natorial enumeration and optimization. The “Markov chain
Monte Carlo” method has been applied to a variety of such
problems, and often provides the only known efficient (i.e.,
polynomial time) solution technique.

482

12.1 INTRODUCTION 483

INTRODUCTION

12.1

This chapter differs from the others in being concerned more with problems of count-
ing and integration, and correspondingly less with optimization. The problems we ad-
dress still tend to be complete, but now for the complexity class of counting problems
known as #P, rather than for the more familiar class NP of decision problems. It also
differs from most of the others in being centred around a general paradigm for design-
ing approximation algorithms, rather than around a specific problem domain. We shall
refer to this paradigm as the “Markov chain Monte Carlo method.” It has been widely
used for many years in several application areas, most notably in computational physics
and combinatorial optimization. However, these algorithms have been almost entirely
heuristic in nature, in the sense that no rigorous guarantees could be given for the qual-
ity of the approximate solutions they produced. Only relatively recently have analytical
tools been developed that allow Markov chain Monte Carlo algorithms to be placed on a
firm foundation with precise performance guarantees. This has led to an upsurge of inter-
est in this area in computer science, and in the development of the first provably efficient
approximation algorithms for several fundamental computational problems. This chap-
ter aims to describe these new tools, and give the reader a flavor of the most significant
applications.

The Markov chain Monte Carlo method provides an algorithm for the following
general computational task. LetΩ be a very large (but finite) set of combinatorial struc-
tures (such as the set of possible configurations of a physical system, or the set of fea-
sible solutions to a combinatorial optimization problem), and let π be a probability
distribution on Ω . The task is to sample an element of Ω at random according to the
distribution π .

In addition to their inherent interest, combinatorial sampling problems of this kind
have many computational applications. The most notable of these are the following:

I. Approximate counting: i.e., estimate the cardinality of Ω . A natural generaliza-
tion is discrete integration, where the goal is to estimate a weighted sum of the
form

∑
x∈Ω w(x), where w is a positive function defined on Ω .

II. Statistical physics: hereΩ is the set of configurations of a statistical mechanical
system, and π is a natural probability distribution on Ω (such as the Gibbs dis-
tribution), in which the probability of a configuration is related to its energy. The
task is to sample configurations according to π , in order to examine properties of
a “typical” configuration and to estimate the expectations of certain natural ran-
dom variables (such as the mean energy of a configuration). Computations of this
kind are typically known as “Monte Carlo experiments.”

III. Combinatorial optimization: here Ω is the set of feasible solutions to an opti-
mization problem, andπ is a distribution that assigns, in some natural way, higher
weight to solutions with a better objective function value. Sampling from π thus
favors better solutions. An example of this approach is the popular optimization
heuristic known as “simulated annealing.”

484 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

In all the above applications, more or less routine statistical procedures are used to infer
the desired computational information from a sequence of independent random samples
from the distribution π . (This point will be illustrated by examples later in the chapter.)
In algorithms of this kind, therefore, it is the sampling itself which presents the major
challenge.

The Markov chain Monte Carlo method solves the sampling problem as follows.
We construct a Markov chain having state space Ω and stationary distribution π . The
Markov chain is designed to be ergodic, i.e., the probability distribution over Ω con-
verges asymptotically to π , regardless of the initial state. Moreover, its transitions cor-
respond to simple random perturbations of structures in Ω , and hence are simple to
simulate. Now we may sample from π as follows: starting from an arbitrary state inΩ ,
simulate the Markov chain for some number, T , of steps, and output the final state. The
ergodicity means that, by taking T large enough, we can ensure that the distribution of
the output state is arbitrarily close to the desired distribution π .

In most applications it is not hard to construct a Markov chain having the above
properties. What is not at all obvious, however, is how to choose the number of simula-
tion steps T , which is the crucial factor in the running time of any algorithm that uses the
chain. Of course, if the algorithm is to be efficient, then T must be very much smaller
than the size ofΩ ; equivalently, we require that the Markov chain be close to its station-
ary distribution after taking a very short random walk throughΩ . Loosely, we shall call
a Markov chain having this property “rapidly mixing,” and the number of steps required
for the distribution to become close to π the “mixing time” of the chain.

In heuristic applications of the Markov chain Monte Carlo method, T is usually cho-
sen by empirical observation of the Markov chain, or by an appeal to combinatorial or
physical intuition. This means that no precise claim can be made about the distribution
of the samples, so no performance guarantee can be given for the associated approxima-
tion algorithms. This observation holds for almost all existing Monte Carlo experiments
in physics, and for almost all applications of simulated annealing in combinatorial opti-
mization. It is a considerable challenge for theoretical computer science to analyze the
mixing time in such applications, and hence to place these algorithms on a firm founda-
tion.

Unfortunately, the classical theory of stochastic processes hardly touches upon the
sort of non-asymptotic analysis required in this situation. In recent years, however, novel
analytical tools have been developed that allow the mixing time of Markov chains of this
kind to be determined quite precisely. This in turn has led to the first rigorous analysis
of the running time of various approximation algorithms based on the Markov chain
Monte Carlo method, as well as to the design of entirely new algorithms of this type.
This chapter aims to present some of these analytical tools, and to describe their most
important algorithmic applications.

The remainder of the chapter is organized as follows. Section 12.2 illustrates how
the Markov chain Monte Carlo method can be applied to a combinatorial problem that
is very simple to state, namely the problem of counting the number of solutions to an
instance of the Knapsack problem. Section 12.3 describes two tools for bounding the
mixing time of Markov chains that have proved successful in a number of applications
(though not as yet in the case of the Knapsack solution counting problem). An illustration
of how these tools might be applied is provided by a toy example, which is a radically
simplified version of the Knapsack problem. Section 12.4 introduces a more substantial

12.2 AN ILLUSTRATIVE EXAMPLE 485

and better motivated application drawn from the field of statistical physics, namely, esti-
mating the partition function of a monomer-dimer system. This computational problem
includes, as a special case, approximately counting matchings of all sizes in a graph. Sec-
tion 12.5 then catalogues various other problems to which the Markov chain Monte Carlo
method has been successfully applied. The concluding Section 12.6 formulates the sim-
ulated annealing heuristic as an instance of the Markov chain Monte Carlo method, and
indicates how the techniques described in Sections 12.3 and 12.4 can, in certain cases,
give rigorous results on the performance of the heuristic.

AN ILLUSTRATIVE EXAMPLE

12.2

To introduce and motivate the Markov chain Monte Carlo method, consider the fol-
lowing problem: given a = (a0, . . . ,an−1) ∈ Nn and b ∈ N, estimate the number N of
0,1-vectors x ∈ {0,1}n satisfying the inequality a · x =∑n−1

i=0 ai xi ≤ b. If the vector a
gives the sizes of n items to be packed into a knapsack of capacity b, the quantity to be
estimated can be interpreted as the number of combinations of items that can be fitted into
the knapsack, which we shall refer to as “Knapsack solutions.” Although this problem
is perhaps not of pressing practical importance, it does provide a convenient demonstra-
tion of the method. No efficient deterministic algorithm is known for accurately counting
Knapsack solutions and there is convincing complexity-theoretic evidence that none ex-
ists. In this regard at least, the chosen example is more realistic than the familiar classical
demonstration of the Monte Carlo method, which involves estimatingπ by casting a nee-
dle onto a ruled surface [Usp37].

The nature of the “convincing evidence” mentioned above is that the problem
of counting Knapsack solutions is complete for Valiant’s complexity class #P [GJ79,
Val79b] with respect to polynomial-time Turing reductions. The class #P is the counting
analogue of the more familiar class NP of decision problems. A #P-complete problem is
computationally equivalent (via polynomial-time Turing reductions) to computing the
number of satisfying assignments of a boolean formula in CNF, or the number of ac-
cepting computations of a polynomial-time nondeterministic Turing machine. Obvi-
ously, computing the number of accepting computations is at least as hard as deciding
whether an accepting computation exists, so #P certainly contains NP. Less obviously,
as Toda [Tod89] has demonstrated, #P also essentially contains the entire
Meyer-Stockmeyer polynomial-time hierarchy. Thus, in structural terms, and maybe
in fact, a #P-complete problem is computationally even harder than an NP-complete
one [Jer94].

A classical Monte Carlo approach to solving the Knapsack problem would be based
on an estimator of the following type. Select uniformly at random (u.a.r.) a vector x ∈
{0,1}n from the corners of the n-dimensional boolean hypercube; if a · x ≤ b then re-
turn 2n, otherwise return 0. The outcome of this experiment is a random variable whose
expectation is precisely N , the value we are required to estimate. In principle, we need
only perform sufficiently many trials and take the mean of the results to obtain a reliable

486 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

approximation to N within any desired accuracy. In practice, the method fails badly, as
we can see by taking a = (1, . . . ,1) and b = n/3. Note that, with these values, the ex-
pected number of trials before the first non-zero outcome is exponential in n. Thus, a
sequence of trials of “reasonable” length will typically yield a mean of 0, even though
the actual number of Knapsack solutions is exponentially large. Clearly, the variance of
the estimator is far too large for it to be of any practical value.

Before considering other, potentially better approaches, we should pause to con-
sider what distinguishes a good algorithm from a bad one. In the theoretical computer
science tradition, we consider an efficient algorithm to be one that terminates in a num-
ber of steps that is bounded by a polynomial in the length of the input. More formally,
suppose f :Σ∗→ N is a function mapping problem instances (encoded as words over
some convenient alphabetΣ) to natural numbers. For example, in the case of the Knap-
sack problem, f might map (encodings of) the pair a ∈ Nn and b ∈ N to the number of
solutions of a · x ≤ b in the set x ∈ {0,1}n. It should be clear that any combinatorial enu-
meration problem can be cast in this framework. A randomized approximation scheme
for f is a randomized algorithm that takes as input a word (instance) x ∈Σ n and ε > 0,
and produces as output a number Y (a random variable) such that1

Pr
(
(1− ε) f (x)≤ Y ≤ (1+ ε) f (x)

)≥ 3
4 . (12.1)

A randomized approximation scheme is said to be fully polynomial [KL83] if it runs in
time polynomial in n (the input length) and ε−1. We shall abbreviate the rather unwieldy
phrase “Fully Polynomial Randomized Approximation Scheme” to FPRAS.

The above provides a clear-cut definition of an “efficient approximation algorithm”
that has at least a certain degree of intuitive appeal. The naive Monte Carlo algorithm
described earlier is not efficient in the FPRAS sense, which is reassuring. On the other
hand, it is certainly debatable whether an algorithm with running time n10 constitutes an
efficient solution in anything other than a theoretical sense. In this chapter, we always
use the FPRAS as our notion of efficient approximation algorithm; while this has the
advantage of providing us with clear goals, it is obvious that in practical applications
some more demanding notion of “efficient approximation” would be necessary.

Returning to the Knapsack problem, we might try applying the Markov chain Monte
Carlo method as follows. Consider the Markov chain MKnap with state space Ω = {x ∈
{0,1}n : a · x ≤ b}, i.e., the set of all Knapsack solutions, and transitions from each state
x = (x0, . . . ,xn−1) ∈Ω defined by the following rule:

I. with probability 1
2 let y = x ; otherwise,

II. select i u.a.r. from the range 0≤ i ≤ n−1 and let y ′ =
(x0, . . . ,xi−1,1− xi,xi+1, . . . ,xn−1);

III. if a · y ′ ≤ b, then let y = y ′, else let y = x ;

the new state is y. Informally, the process MKnap may be interpreted as a random walk
(with stationary moves) on the boolean hypercube, truncated by the hyperplane a ·x = b.

1There is no significance in the constant 3
4 appearing in the definition, beyond its lying strictly

between 1
2 and 1. Any success probability greater than 1

2 may be boosted to 1− δ for any desired δ > 0
by performing a small number of trials and taking the median of the results; the number of trials required
is O(lnδ−1) [JVV86].

12.2 AN ILLUSTRATIVE EXAMPLE 487

The Markov chain MKnap is ergodic, since all pairs of states intercommunicate via
the state (0, . . . ,0), and the presence of loops ensures aperiodicity; it is readily checked
that the stationary distribution is uniform overΩ . This observation immediately suggests
a procedure for selecting Knapsack solutions almost u.a.r.: starting in state (0, . . . ,0),
simulate MKnap for sufficiently many steps that the distribution over states is “close”
to uniform, then return as result the current state. Of course, sampling from Ω is not
quite the same as estimating the size of Ω (which is our goal), but the second task can
be related to the first using a simple trick, which we now describe.2

We keep the vector a fixed, but allow the bound b to vary, writing Ω(b) and
MKnap(b) to make explicit the dependence of the Markov chain on b. Assume without
loss of generality that a0 ≤ a1≤ ·· · ≤ an−1, and define b0= 0 and bi =min

{
b,
∑i−1

j=0 a j
}
,

for 1≤ i ≤ n. It may easily be verified that |Ω(bi−1)| ≤ |Ω(bi)| ≤ (n+1)|Ω(bi−1)|, for
1 ≤ i ≤ n, the key observation being that any element of Ω(bi) may be converted into
an element of Ω(bi−1) by changing the rightmost 1 to a 0. Now write

|Ω(b)| = |Ω(bn)| = |Ω(bn)|
|Ω(bn−1)| ×

|Ω(bn−1)|
|Ω(bn−2)| × · · ·×

|Ω(b1)|
|Ω(b0)| × |Ω(b0)|,

(12.2)

where, of course, |Ω(b0)| = 1. The reciprocals ρi = |Ω(bi−1)|/|Ω(bi)| of each of the
ratios appearing in (12.2) may be estimated by sampling almost uniformly from Ω(bi)

using the Markov chain MKnap(bi), and computing the fraction of the samples that lie
withinΩ(bi−1).

Consider the random variable associated with a single trial — i.e., one run of the
Markov chain MKnap(bi) — that is defined to be 1 if the final state is a member of
Ω(bi−1), and 0 otherwise. If we were able to simulate MKnap(bi) “to infinity,” the ex-
pectation of this random variable would be precisely ρi . In reality, we must terminate
the simulation at some point, thereby introducing a small though definite bias that ought
to be accounted for. To avoid obscuring the main ideas, let us ignore this technical com-
plication for the time being; details of this kind will be attended to when we address a
more realistic example in Section 12.4. With the simplifying assumption of zero bias,
the expectation of an individual trial is ρi , and its variance, since it is a 0,1-variable, is
ρi(1−ρi). Suppose we perform t = 17ε−2n2 trials, and let X i denote the sample mean.
In analyzing the efficiency of Monte Carlo estimators, the quantity to focus on is the ra-
tio of the variance of the estimator to the square of its expectation; in this instance we
have

Var X i

ρ2
i

= 1−ρi

tρi
≤ n

t
= ε2

17n
,

where the inequality follows from earlier-noted bound ρi = |Ω(bi−1)|/|Ω(bi)| ≥
(n+1)−1.

Suppose the above process is repeated for each of the n ratios in equation (12.2), and
denote by Z the random variable Z = X n X n−1 . . .X 1 which is the product of the various
sample means. Then, since the random variables X i are independent, the expectation

2For a more detailed discussion of the problem of inferring information from observations of a
Markov chain, see [Ald87, Gill93, Kah94].

488 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

of Z is E Z = ρnρn−1 . . .ρ1 = |Ω(b)|−1, and

Var Z

(E Z)2
=

n∏

i=1

[
1+ Var X i

ρ2
i

]
−1≤

[
1+ ε2

17n

]n

−1≤ ε
2

16
,

assuming ε ≤ 1. By Chebyshev’s inequality, this implies that

Pr
(
(1− ε/2)|Ω(b)|−1 ≤ Z ≤ (1+ ε/2)|Ω(b)|−1

) ≥ 3
4 ,

so the random variable Y = Z−1 satisfies (12.1), i.e., it yields a randomized approxima-
tion scheme for the number of Knapsack solutions. The idea of expressing the quantity to
be estimated as a product of small factors in the style of (12.2) and then estimating each
of the factors by separate Monte Carlo experiments, is one that has repeatedly proved
useful in this area, since it provides a general tool for reducing approximate counting to
sampling.

Observe that the total number of trials (Markov chain simulations) used is nt =
17ε−2n3, which is polynomial in n and ε−1. The method described above is therefore
an FPRAS for the number of Knapsack solutions, provided the Markov chain MKnap

is “rapidly mixing,” that is to say, is close to stationarity after a number of steps that
is polynomial in n. This is a non-trivial condition, since the size of the state space Ω is
exponential in n. Given the relative simplicity of the Markov chain MKnap, it is humbling
that the question of whether MKnap is rapidly mixing is even now unresolved. The wider
question of whether there exists an FPRAS of any kind for the Knapsack problem is
also unresolved, though the Markov chain simulation approach sketched above seems to
offer the best hope. Using it, Dyer et al. [DFKKPV93] were able to obtain a randomized
approximation scheme for the number of Knapsack solutions whose running time is
ε−2 exp

(
O(
√

n (logn)5/2)
)
, and this is asymptotically the fastest known.

OPEN PROBLEM 12.1 Is the Markov chain Mknap rapidly mixing (i.e., is its mixing
time bounded by a polynomial in the dimension n — see next section) for all choices of
the bound b and item sizes a?

TWO TECHNIQUES FOR BOUNDING
THE MIXING TIME

12.3

It will be clear from Section 12.2 that successful application of the Markov chain Monte
Carlo method rests on obtaining good bounds on the time taken for a Markov chain to
become close to stationarity.

There are a number of ways of quantifying “closeness” to stationarity, but they are
all essentially equivalent in this application. Let M be an ergodic Markov chain on state
space Ω with transition probabilities P : Ω 2→ [0,1]. Let x ∈ Ω be an arbitrary state,
and denote by P t (x, ·) the distribution of the state at time t given that x is the initial state.
Denote by π the stationary distribution of M. Then the variation distance at time t with

12.3 TWO TECHNIQUES FOR BOUNDING THE MIXING TIME 489

respect to the initial state x is defined to be

∆x(t)=max
S⊆Ω

∣∣P t (x, S)−π(S)∣∣= 1
2

∑

y∈Ω

∣∣P t (x, y)−π(y)∣∣.

Note that the variation distance provides a uniform bound, over all events S ⊆ Ω , of
the difference in probabilities of occurrence of event S under the stationary and t-step
distributions. The rate of convergence of M to stationarity may then be measured by the
function

τx(ε)=min{t :∆x(t
′)≤ ε for all t ′ ≥ t},

which we shall refer to as the “mixing time” of the Markov chain.
The classical approach to bounding τx(ε) is via a “coupling” argument. This ap-

proach is very successful in the context of highly symmetric Markov chains (e.g., those
associated with card shuffling [Ald81, Dia88]), but seems difficult to apply to the kind
of “irregular” Markov chains that arise in the analysis of Monte Carlo algorithms. Two
exceptions are the analyses of Aldous [Ald90] and Broder [Bro89] for a Markov chain
on spanning trees of a graph, and of Matthews [Mat91] for a Markov chain related to
linear extensions of a partial order. A glance at the latter paper will give an impression
of the technical complexities that can arise.3

We should point out that the coupling method has very recently shown signs of stag-
ing a comeback. Jerrum [Jer95] has presented a simple application to sampling vertex
colorings of a low-degree graph. Propp and Wilson [PW95] have some novel and at-
tractive thoughts on applying coupling when the state space of the Markov chain has a
natural lattice structure; their ideas are encouraging, and provide one of the ingredients in
Luby, Randall, and Sinclair’s [LRS95] analysis of a Markov chain on dimer coverings of
certain planar (geometric) lattice graphs. Also, Bubley, Dyer, and Jerrum [BDJ96] have
applied coupling to demonstrate rapid mixing of a certain random walk in a convex body,
a situation we return to in Section 12.5.2. Finally, coupling has been used in a Markov
chain approach to protocol testing by Mihail and Papadimitriou [MP94]. Despite this
activity, it is not yet clear how far the coupling method can be pushed in the analysis of
complex Markov chains.

In this section we consider two recently proposed alternatives to coupling, which
tend to give weaker bounds but which are applicable in a wider range of situations.
Historically [Sin93, SJ89], these two methods were not separate, but were developed
together in a composite approach to bounding τx(ε); however, for practical purposes
it is better to view them now as distinct approaches. We describe the “canonical path”
argument first, and complete the section with a treatment of the “conductance” argument.
For further discussion of these approaches, and various refinements of them, see, e.g.,
[DS91, Sin92, DSC93, Kah95].

We shall assume throughout the rest of the section that M is reversible, that is to
say, satisfies the detailed balance condition:

Q(x, y)= π(x)P(x, y)= π(y)P(y,x), for all x, y ∈Ω;
furthermore, we assume the loop probabilities P(x,x) are at least 1

2 for all x ∈Ω . Since

3For a more direct approach to this problem, using a conductance argument as described below,
see [KK90].

490 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

the Markov chain M is a constructed one, it is not at all difficult to arrange that these
two conditions are met.

12.3.1 CANONICAL PATHS

To describe the canonical path argument, we view M as an undirected graph with ver-
tex set Ω and edge set E = {{x, y} ∈Ω (2) : Q(x, y) > 0

}
; this makes sense because of

the reversibility condition. For each (ordered) pair (x, y) ∈Ω 2, we specify a canonical
path γxy from x to y in the graph (Ω,E); the canonical path γxy corresponds to a se-
quence of legal transitions in M that leads from initial state x to final state y. Denote by
Γ = {γxy : x, y ∈Ω} the set of all canonical paths. For the method to yield good bounds,
it is important to choose a set of paths Γ that avoids the creation of “hot spots:” edges of
the graph that carry a particularly heavy burden of canonical paths. The degree to which
an even loading has been achieved is measured by the quantity

ρ̄ = ρ̄(Γ)=max
e

1

Q(e)

∑

γx y3e

π(x)π(y)|γxy|,

where the maximum is over oriented edges e of (Ω,E), and |γxy| denotes the length of
the path γxy .

Intuitively, we might expect a Markov chain to be rapidly mixing if it contains no
“bottlenecks,” i.e., if it admits a choice of paths 0 for which ρ̄(0) is not too large. This
intuition is formalized in the following result from Sinclair [Sin92], which is a slight
modification of a theorem of Diaconis and Stroock [DS91].

PROPOSITION 12.1 Let M be a finite, reversible, ergodic Markov chain with loop
probabilities P(x,x)≥ 1

2 for all states x . LetΓ be a set of canonical paths with maximum
edge loading ρ̄ = ρ̄(Γ). Then the mixing time of M satisfies τx(ε) ≤ ρ̄(lnπ(x)−1 +
lnε−1), for any choice of initial state x .4

Proof. Combine Proposition 1 of [Sin92] and Theorem 5 of [Sin92].

We demonstrate the canonical path method by applying it to a radically simplified
version of the Knapsack Markov chain from Section 12.2. Instead of a random walk on
the truncated boolean hypercube, we consider a random walk on the the full hypercube.
This can be viewed as the degenerate case of the Knapsack Markov chain which obtains
when

∑
i ai ≤ b, i.e., the knapsack is large enough to contain all items simultaneously.

Let x = (x0,x1, . . . ,xn−1) and y = (y0, y1, . . . , yn−1) be arbitrary states in Ω =
{0,1}n. The canonical path γxy from x to y is composed of n edges, 0 to n− 1, where
edge i is simply

(
(y0, . . . , yi−1,xi ,xi+1, . . . xn−1), (y0, . . . , yi−1, yi ,xi+1, . . .xn−1)

)
, i.e.,

we flip the value of the i th bit from x i to yi . Note that some of the edges may be loops
(if xi = yi). To compute ρ̄, fix attention on a particular (oriented) edge

e = (w,w′)= ((w0, . . . ,wi , . . .wn−1), (w0, . . . ,w
′
i , . . .wn−1)

)
,

and consider the number of canonical paths γxy that include e. The number of possible

4This Proposition also has a suitably stated converse; see Theorem 8 of [Sin92].

12.3 TWO TECHNIQUES FOR BOUNDING THE MIXING TIME 491

choices for x is 2i , as the final n− i positions are determined by x j = w j , for j ≥ i ,
and by a similar argument the number of possible choices for y is 2n−i−1. Thus, the to-
tal number of canonical paths using a particular edge e is 2n−1; furthermore, Q(e) =
π(w)P(w,w′) ≥ 2−n(2n)−1, and the length of every canonical path is exactly n. Plug-
ging all these bounds into the definition of ρ̄ yields ρ̄ ≤ n2. Thus, by Proposition 12.1,
the mixing time for the random walk on the boolean hypercube is τx(ε) ≤ n2

(
(ln2)n+

lnε−1
)
. We call this Markov chain “rapidly mixing” because its mixing time grows

only polynomially with the input size n (even though the size of the state space is ex-
ponential in n). The above bound is some way off the exact answer [Dia88], which is
τx(ε)= O

(
n(lnn+ lnε−1)

)
, and the slackness we see here is typical of the method.

On reviewing the canonical path argument, we perceive what appears to be a major
weakness. In order to compute the key quantity ρ̄, we needed in turn to compute quanti-
ties such as Q(e) that depend crucially on the size of the state spaceΩ . In the hypercube
example this does not present a problem, but in more interesting examples we do not
know the size of the state space: indeed, our ultimate goal will often be to estimate this
very quantity. Fortunately, it is possible to finesse this obstacle by implicit counting us-
ing a carefully constructed injective map. The idea will be illustrated by application to
the hypercube example.

Let edge e = (w,w′) be as before, and denote by cp(e) = {(x, y) : γxy 3 e} the set
of all (endpoints of) canonical paths that use edge e. Define the map ηe : cp(e)→Ω as
follows: if (x, y)= ((x0, . . . ,xn−1), (y0, . . . , yn−1)

) ∈ cp(e) then

ηe(x, y)= (u0, . . . ,un−1)= (x0, . . . ,xi−1,wi , yi+1, . . . , yn−1).

The crucial feature of the map ηe is that it is injective. To see this, observe that x and y
may be unambiguously recovered from (u0, . . . ,un−1) = ηe(x, y) through the explicit
expressions

x = (u0, . . . ,ui−1,wi ,wi+1, . . . ,wn−1)

and

y = (w0, . . . ,wi−1,w
′
i ,ui+1, . . . ,un−1).

Using the injective map ηe it is possible to evaluate ρ̄ without recourse to explicit
counting. Noting5 that π(x)π(y)= π(w)π(ηe(x, y)), we have

1

Q(e)

∑

γx y3e

π(x)π(y)|γxy| = 1

π(w)P(w,w′)

∑

γx y3e

π(w)π(ηe(x, y)) |γxy|

= n

P(w,w′)

∑

γx y3e

π(ηe(x, y))≤ n

P(w,w′)
≤ 2n2,

where the penultimate inequality follows from the facts that ηe is injective, and that π is
a probability distribution. Since the above argument is valid uniformly over the choice
of e, we deduce ρ̄ ≤ 2n2. The factor of 2 as compared with the direct argument was lost
to slight redundancy in the encoding: the map ηe was not quite a bijection.

5This is a trivial observation when the stationary distribution is uniform, as it is here, but it is
sometimes possible, by judicious choice of ηe, to contrive such an identity even when the stationary
distribution is non-uniform. See Section 12.4 for an example.

492 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

12.3.2 CONDUCTANCE

As advertised earlier, we now consider an alternative “conductance” approach to bound-
ing τx(ε), which has proved useful in situations where the Markov chain can be given a
geometric interpretation [DFK91]. The conductance [SJ89] of Markov chain M is de-
fined by

Φ =Φ(M)= min
S⊂Ω

0<π(S)≤1/2

Q(S, S)

π(S)
, (12.3)

where Q(S, S) denotes the sum of Q(x, y) over edges {x, y} ∈ E with x ∈ S and y ∈ S=
Ω− S. The conductance may be viewed as a weighted version of edge expansion of the
graph (Ω,E) associated with M. Alternatively, the quotient appearing in (12.3) can be
interpreted as the conditional probability that the chain in equilibrium escapes from the
subset S of the state space in one step, given that it is initially in S; thus, Φ measures
the readiness of the chain to escape from any small enough region of the state space,
and hence to make rapid progress towards equilibrium. This intuitive connection can be
given a precise quantitative form as follows. (See [Ald87, Alon86, AM85, Che70, LS88]
for related results.)

PROPOSITION 12.2 Let M be a finite, reversible, ergodic Markov chain with loop
probabilities P(x,x) ≥ 1

2 for all states x . Let Φ be the conductance of M as defined
in (12.3). Then the mixing time of M satisfies τx(ε) ≤ 2Φ−2(lnπ(x)−1+ lnε−1), for
any choice of initial state x .

Proof. Combine Proposition 1 of [Sin92] and Theorem 2 of [Sin92].

From Proposition 12.2 it will be apparent that good lower bounds on conductance
translate to good upper bounds on the mixing time τx(ε). As we shall see presently, it is
possible to bound the conductance of the random walk on the hypercube by considering
the geometry of the hypercube and applying an “isoperimetric inequality.”

For x ∈Ω = {0,1}n and S ⊆Ω , define

C(x)= {ξ = (ξ0, . . . ,ξn−1) : |ξi − xi | ≤ 1
2 , for all i

}
,

and C(S)=⋃x∈S C(x). Observe that the mapping C provides a geometric interpretation
of each set S of states as a body in n-dimensional space, and that within this interpretation
the entire state space Ω is a hypercube K = C(Ω) of side 2. Each possible transition
from a state in S to a state in S contributes one unit of area (i.e., (n− 1)-dimensional
volume) to ∂C(S)− ∂K , where ∂ denotes boundary, and each transition occurs with
probability 1

2n ; thus,

Q(S, S)= 1

2n|Ω| voln−1(∂C(S)− ∂K), (12.4)

where vold denotes d-dimensional volume.
Intuitively, if voln C(S) is large (but less than 1

2 voln K), then ∂C(S)− ∂K must
also be large. It is this kind of intuition that is captured and formalized in an isoperi-
metric inequality. Rather than working with the Euclidean norm and using a classical

12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 493

isoperimetric inequality, it is advantageous in this instance to work with the l∞-norm
‖ξ‖∞ =max{|ξ0|, . . . , |ξn−1|} and its dual the l1-norm ‖ξ‖∗∞ =‖ξ‖1 = |ξ0|+· · ·+|ξn−1|,
and invoke a very refined isoperimetric inequality due to Dyer and Frieze [DF91], which
holds for arbitrary norms.

Observe that voln C(S) = |S|, voln K = 2n , and diam K = 2, where diam denotes
diameter in the l∞-norm. From Theorem 3 of [DF91], taking F to be identically 1, we
have, for |S| ≤ 1

2 |Ω|,
voln C(S)

voln−1(∂C(S)− ∂K)
≤ 1

2 diam K ;

it follows immediately that voln−1(∂C(S)−∂K)≥ |S|. Combining this inequality with
equation (12.4) yields

Q(S, S) ≥ |S|
2n|Ω| =

π(S)

2n
.

From the definition of conductance, Φ ≥ 1
2n , and hence, by Proposition 12.2, τx(ε) ≤

8n2
(
(ln2)n+ lnε−1

)
. It will be seen that for this example the two bounds obtained using

the conductance and canonical paths arguments differ by just a small constant factor.

A MORE COMPLEX EXAMPLE: MONOMER-DIMER
SYSTEMS

12.4

In this section we describe a significant computational problem to which the Markov
chain Monte Carlo method has been successfully applied to yield an efficient approx-
imation algorithm, or FPRAS. (This is in contrast to the Knapsack problem discussed
in Section 12.2, which is still open.) Moreover, the Markov chain Monte Carlo method
is to date the only approach that yields a provably efficient algorithm for this problem.
This application will illustrate the full power of the analysis techniques described in the
previous section. Our presentation is an improved version of one we originally gave
in [JS89, Sin93].

The problem in question is a classical one from statistical physics, known as the
monomer-dimer problem. In a monomer-dimer system, the vertices of a finite undirected
graph G = (V,E) are covered by a non-overlapping arrangement, or configuration of
monomers (molecules occupying one site, or vertex of G) and dimers (molecules oc-
cupying two vertices that are neighbors in G). Typically, G is a regular lattice in some
fixed number of dimensions. Three-dimensional systems occur classically in the theory
of mixtures of molecules of different sizes [Gugg52] and in the cell-cluster theory of the
liquid state [CdBS55]; in two dimensions, the system is used to model the adsorption
of diatomic molecules on a crystal surface [Rob35]. For a more detailed account of the
history and significance of monomer-dimer systems, the reader is referred to the seminal
paper of Heilmann and Lieb [HL72] and the references given there.

494 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

It is convenient to identify monomer-dimer configurations with matchings in the
graph G; a matching in G is a subset M ⊆ E such that no two edges in M share an
endpoint. Thus, a matching of cardinality k, or a k-matching, corresponds precisely to a
monomer-dimer configuration with k dimers and 2(n−k)monomers, where 2n= |V | is
the number of vertices in G.6 To each matching M , a weight w(M) = λ|M| is assigned,
where λ is a positive real parameter that reflects the contribution of a dimer to the energy
of the system. The partition function of the system is defined as

Z(λ)≡ ZG(λ)=
∑

M

w(M) =
n∑

k=0

mkλ
k, (12.5)

where mk ≡ mk(G) is the number of k-matchings in G (or equivalently, the number of
monomer-dimer configurations with k dimers). For a physical interpretation of (12.5),
see [HL72].7

The partition function is a central quantity in statistical physics, and captures essen-
tially everything one needs to know about the thermodynamics of the system, including
quantities such as the free energy and the specific heat, and the location of phase transi-
tions. With this in mind, in the remainder of this section we will develop an algorithm
for computing ZG at an arbitrary point λ≥ 0. We should also point out that Z G(λ) is of
independent combinatorial interest, being nothing other than the generating function for
matchings, or matching polynomial of G [LP86]. Thus, for example, Z G(1) enumerates
all matchings in G, and the coefficient mk enumerates matchings of cardinality k. We
shall have more to say about these connections in Section 12.5.1.

Our starting point is the observation that no feasible method is known for comput-
ing Z exactly for general monomer-dimer systems; indeed, for any fixed value of λ > 0,
the problem of computing ZG(λ) exactly for a given graph G is complete for the class #P
of enumeration problems, which, as we explained in Section 12.2, may be regarded as
convincing evidence that no polynomial time exact algorithm can exist for this prob-
lem [Val79b].8 It is therefore pertinent to ask whether there exists an FPRAS for this
problem. In this context, by an FPRAS we mean an algorithm which, given a pair (G,λ),
and a parameter ε > 0, outputs a number Y such that

Pr
(
(1− ε)ZG(λ)≤ Y ≤ (1+ ε)ZG(λ)

) ≥ 3
4 ,

and runs in time polynomial in n and λ′ =max{1,λ}.9

6The assumption that the number of vertices in G is even is inessential and is made for notational
convenience.

7More generally, there may be a weight λe associated with each edge e ∈ E , and the weight of M is
then w(M)=∏e∈M λe. The algorithm we present here extends in a straightforward fashion to this more
general setting.

8An efficient algorithm does exist for computing the leading coefficient mn exactly, provided the
graph G is planar. This quantity has an interpretation as the partition function of a system of hard dimers,
in which no monomers are permitted. This algorithm, due independently to Fisher, Kasteleyn, and
Temperley [Fish61, Kast61, TF61] in 1961, is a landmark achievement in the design of combinatorial
algorithms. Unfortunately, it does not seem to extend either to non-planar graphs or to other coefficients.

9By analogy with the definition given in Section 12.2, this assumes that the edge weight λ is pre-
sented in unary. Thus, if the running time of the algorithm is to be polynomial in the size of the system, n,
then the edge weight λ must be polynomially bounded in n. This is not a severe restriction in practice
when computing the partition function.

12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 495

For a given graph G, we will construct an FPRAS for Z G by Monte Carlo simulation
of a suitable Markov chain Mmatch(λ), parameterized on the edge weight λ. The state
space,Ω , is the set of all matchings in G, and the transitions are constructed so that the
chain is ergodic with stationary distribution πλ given by

πλ(M)= λ|M|

Z(λ)
. (12.6)

(Since G is fixed from now on, we drop the subscript from Z .) In other words, the station-
ary probability of each matching (monomer-dimer configuration) is proportional to its
weight in the partition function (12.5). The Markov chain Mmatch(λ), if simulated for suf-
ficiently many steps, provides a method of sampling matchings from the distribution πλ.

Distributions of this form are natural in statistical physics and are usually referred to
as canonical or Gibbs distributions. Note that an alternative interpretation of the partition
function is as the normalizing factor in this distribution. Sampling from this distribution
at various values ofλ has many applications, such as estimating the expectation of certain
natural quantities associated with a configuration (e.g., the mean number of monomers,
or the mean distance between a pair of monomers in a dense configuration of dimers).
As we shall see shortly, it also allows one to approximate the partition function itself.

It is not hard to construct a Markov chain Mmatch(λ) with the right asymptotic
properties. Consider the chain in which transitions from any matching M are made
according to the following rule:

I. with probability 1
2 let M ′ = M ; otherwise,

II. select an edge e = {u,v} ∈ E u.a.r. and set

M ′ =





M − e if e ∈ M ;
M + e if both u and v are unmatched in M ;
M + e− e′ if exactly one of u and v is matched in M

and e′ is the matching edge;
M otherwise;

III. go to M ′ with probability min{1,πλ(M ′)/πλ(M)}.

It is helpful to view this chain as follows. There is an underlying graph defined on the
set of matchings Ω in which the neighbors of matching M are all matchings M ′ that
differ from M via one of the following local perturbations: an edge is removed from M
(a type 1 transition); an edge is added to M (a type 2 transition); or a new edge is
exchanged with an edge in M (a type 0 transition). Transitions from M are made by first
selecting a neighbor M ′ u.a.r., and then actually making, or accepting the transition with
probability min{1,πλ(M ′)/πλ(M)}. Note that the ratio appearing in this expression is
easy to compute: it is just λ−1, λ or 1 respectively, according to the type of the transition.

As the reader may easily verify, this acceptance probability is constructed so that
the transition probabilities P(M,M ′) satisfy the detailed balance condition

Q(M,M ′)= πλ(M)P(M,M ′)= πλ(M ′)P(M ′,M), for all M,M ′ ∈Ω,
i.e., Mmatch(λ) is reversible with respect to the distribution πλ. This fact, together with
the observation that Mmatch(λ) is irreducible (i.e., all states communicate, for example
via the empty matching) and aperiodic (by step 1, the self-loop probabilities P(M,M)

496 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

are all non-zero), ensures that Mmatch(λ) is ergodic with stationary distribution πλ, as
required.10

Having constructed a family of Markov chains with stationary distribution πλ, our
next task is to explain how samples from this distribution can be used to obtain a reliable
statistical estimate of Z(λ) at a specified point λ= λ̂≥ 0. Our strategy is to express Z (̂λ)
as the product

Z (̂λ)= Z(λr)

Z(λr−1)
× Z(λr−1)

Z(λr−2)
×·· · Z(λ2)

Z(λ1)
× Z(λ1)

Z(λ0)
× Z(λ0), (12.7)

where 0 = λ0 < λ1 < λ2 < · · · < λr−1 < λr = λ̂ is a suitably chosen sequence of
values. Note that Z(λ0) = Z(0) = 1. We will then estimate each factor Z(λi)/Z(λi−1)

in this product by sampling from the distribution πλi . This approach is analogous to that
described in Section 12.2 for the Knapsack problem (see Equation (12.2)). For reasons
that will become clear shortly, we will use the sequence of values λ1 = |E|−1 and λi =
(1+ 1

n)
i−1λ1 for 1≤ i < r . The length r of the sequence is taken to be minimal such that

(1+ 1
n)

r−1λ1 ≥ λ̂, so we have the bound

r ≤ ⌈2n
(
ln λ̂+ ln |E|)⌉+1. (12.8)

To estimate the ratio Z(λi)/Z(λi−1), we will express it, or rather its reciprocal, as
the expectation of a suitable random variable. Specifically, define the random variable
fi (M) =

(
λi−1

λi

)|M|
, where M is a matching chosen from the distribution πλi . Then we

have

E fi =
∑

M

(
λi−1

λi

)|M|
λ
|M|
i

Z(λi)
= 1

Z(λi)

∑

M

λ
|M|
i−1 =

Z(λi−1)

Z(λi)
.

Thus, the ratio ρi = Z(λi−1)/Z(λi) can be estimated by sampling matchings from the
distribution πλi and computing the sample mean of fi . Following (12.7), our estimator
of Z (̂λ)will be the product of the reciprocals of these estimated ratios. Summarizing this
discussion, our algorithm can be written down as follows:

ALGORITHM A

Step 1: Compute the sequence λ1 = |E|−1 and λi =
(
1+ 1

n

)i−1
λ1 for 1 ≤ i < r ,

where r is the least integer such that
(
1+ 1

n

)r−1
λ1 ≥ λ̂. Set λ0 = 0 and

λr = λ̂.

Step 2: For each value λ = λ1,λ2, . . . ,λr in turn, compute an estimate X i of the
ratio ρi as follows:

(a) by performing S independent simulations of the Markov chain
Mmatch(λi), each of length Ti , obtain an independent sample of size S
from (close to) the distribution πλi ;

10The device of performing random walk on a connected graph with acceptance probabilities of
this form is well known in Monte Carlo physics under the name of the “Metropolis process” [Met53].
Clearly, it can be used to achieve any desired stationary distribution π for which the ratio π(u)/π(v)
for neighbors u,v can be computed easily. It is also the standard mechanism used in combinatorial
optimization by simulated annealing: see Section 12.6.

12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 497

(b) let X i be the sample mean of the quantity
(
λi−1

λi

)|M|
.

Step 3: Output the product Y =∏r
i=1 X−1

i .

To complete the description of the algorithm, we need to specify the sample size S in
Step 2, and the number of simulation steps Ti required for each sample. Our goal is to
show that, with suitable values for these quantities, AlgorithmA is an FPRAS for Z(λ).

The issue of the sample size S is straightforward. Using elementary statistical cal-
culations, we can show the following:

PROPOSITION 12.3 In Algorithm A, suppose the sample size S in Step 2 is S =
d130eε−2re, and that the simulation length Ti is large enough that the variation distance
of Mmatch(λi) from its stationary distribution πλi is at most ε/5er . Then the output
random variable Y satisfies

Pr
(
(1− ε)Z (̂λ)≤ Y ≤ (1+ ε)Z (̂λ)) ≥ 3

4 .

Since r is a relatively small quantity (essentially linear in n: see (12.8)), this result
means that a modest sample size at each stage suffices to ensure a good final estimate Y ,
provided of course that the samples come from a distribution that is close enough to πλi .

It is in determining the number of simulation steps, Ti , required to achieve this that
the meat of the analysis lies: of course, this is tantamount to investigating the mixing
time of the Markov chain Mmatch(λi). Our main task in this section will be to show:

PROPOSITION 12.4 The mixing time of the Markov chain Mmatch(λ) satisfies

τX (ε) ≤ 4|E|nλ′(n(lnn+ lnλ′)+ lnε−1
)
.

The proof of this result will make use of the full power of the machinery introduced in
Section 12.3. Note that Proposition 12.4 is a very strong statement: it says that we can
sample from (close to) the complex distribution πλ over the exponentially large space of
matchings in G, by performing a Markov chain simulation of length only a low-degree
polynomial in the size of G.11

According to Proposition 12.3, we require a variation distance of ε/5er , so Propo-
sition 12.4 tells us that it suffices to take

Ti =
⌈

4|E|nλ′i
(
n(lnn+ lnλ′i)+ ln(5er/ε)

)⌉
. (12.9)

This concludes our specification of the AlgorithmA.
Before proceeding to prove the above statements, let us convince ourselves that

together they imply that AlgorithmA is an FPRAS for Z(λ). First of all, Proposition 12.3
ensures that the output of AlgorithmA satisfies the requirements of an FPRAS for Z . It
remains only to verify that the running time is bounded by a polynomial in n, λ̂′, and ε−1.
Evidently, the running time is dominated by the number of Markov chain simulations

11Incidentally, we should point out that Proposition 12.4 immediately tells us that we can sample
monomer-dimer configurations from the canonical distribution πλ, in time polynomial in n and λ′. This
is in itself an interesting result, and allows estimation of the expectation of many quantities associated
with monomer-dimer configurations.

498 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

steps, which is
∑r

i=1 STi ; since Ti increases with i , this is at most r STr . Substituting the
upper bound for r from (12.8), and values for S from Proposition 12.3 and Tr from (12.9),
we see that the overall running time of AlgorithmA is bounded by12

O
(
n4|E |̂λ′(ln n̂λ′)3ε−2),

which grows only polynomially with n, λ̂′ and ε−1. We have therefore proved

THEOREM 12.1 Algorithm A is an FPRAS for the partition function of an arbitrary
monomer-dimer system.

We return now to prove Proposition 12.3 and Proposition 12.4. The first of these can
be dispensed with quickly. It rests on the standard observation that the sample size S re-
quired at each value λ= λi to ensure that our final estimate is good with high probability
depends on the variances of the random variables f i , or more precisely on the quanti-
ties (Var fi)/(E fi)

2. Intuitively, if these quantities are not too large, a small sample will
suffice. Since fi takes values in the range [0,1], it is clear that Var f i ≤ E fi = ρi , so that
(Var fi)/(E fi)

2 ≤ ρ−1
i . Now, from the definition of Z and λi we have for 1≤ i ≤ r ,

ρ−1
i =

Z(λi)

Z(λi−1)
=

∑
k mkλ

k
i∑

k mkλ
k
i−1

≤
(
λi

λi−1

)n

≤
(

1+ 1

n

)n

≤ e.
(12.10)

Also, it is easy to see (using the fact that matchings are subsets of E) that Z
(|E|−1

)≤ e,
so (12.10) holds for i = 0 also. Thus, we have (Var f i)/(E fi)

2 ≤ e for all i . This explains
our choice of values for the λi .

Armed with this bound on the variances of the f i , one can prove Proposition 12.3
by a routine statistical calculation. The details are unedifying and are deferred to the
Appendix.

We turn now to the more challenging question of proving Proposition 12.4. Our
strategy will be to carefully choose a collection of canonical paths 0= {γXY : X,Y ∈Ω}
in the Markov chain Mmatch(λ) for which the “bottleneck” measure ρ̄(0) of Section 12.3
is small. We can then appeal to Proposition 12.1 to bound the mixing time. Specifically,
we shall show that our paths satisfy

ρ̄(0) ≤ 4|E|nλ′. (12.11)

Since the number of matchings in G is certainly bounded above by (2n)!, the station-
ary probability πλ(X) of any matching X is bounded below by πλ(X) ≥ 1/(2n)!λ′n .
Using (12.11) and the fact that lnn! ≤ n lnn, the bound on the mixing time in Propo-
sition 12.4 can now be read off Proposition 12.1.

It remains for us to find a set of canonical paths 0 satisfying (12.11). For a pair
of matchings X,Y in G, we define the canonical path γXY as follows. Consider the
symmetric difference X⊕Y . A moment’s reflection should convince the reader that this
consists of a disjoint collection of paths in G (some of which may be closed cycles),

12In deriving the O-expression, we have assumed w.l.o.g. that Tr = O
(|E |n2̂λ′ lnnλ̂′

)
. This follows

from (12.9) with the additional assumption that lnε−1 = O(n lnn). This latter assumption is justified
since the problem can always be solved exactly by exhaustive enumeration in time O(n(2n)!), which is
O(ε−2) if lnε−1 exceeds the above bound.

12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 499

each of which has edges that belong alternately to X and to Y . Now suppose that we
have fixed some arbitrary ordering on all simple paths in G, and designated in each of
them a so-called “start vertex,” which is arbitrary if the path is a closed cycle but must
be an endpoint otherwise. This ordering induces a unique ordering P1, P2, . . . , Pm on the
paths appearing in X ⊕Y . The canonical path from X to Y involves “unwinding” each
of the Pi in turn as follows. There are two cases to consider:

(i) Pi is not a cycle. Let Pi consist of the sequence (v0,v1, . . . ,vl) of vertices, with v0

the start vertex. If (v0,v1) ∈ Y , perform a sequence of type 0 transitions replacing
(v2 j+1,v2 j+2) by (v2 j ,v2 j+1) for j = 0,1, . . . , and finish with a single type 2
transition if l is odd. If on the other hand (v0,v1)∈ X , begin with a type 1 transition
removing (v0,v1) and proceed as before for the reduced path (v1, . . . ,vl).

(ii) Pi is a cycle. Let Pi consist of the sequence (v0,v1, . . . ,v2l+1) of vertices, where
l ≥ 1, v0 is the start vertex, and (v2 j ,v2 j+1)∈ X for 0≤ j ≤ l, the remaining edges
belonging to Y . Then the unwinding begins with a type 1 transition to remove
(v0,v1). We are left with an open path O with endpoints v0,v1, one of which must
be the start vertex of O. Suppose vk , k ∈ {0,1}, is not the start vertex. Then we
unwind O as in (i) above but treating vk as the start vertex. This trick serves to
distinguish paths from cycles, as will prove convenient shortly.

This concludes our definition of the family of canonical paths0. Figure 12.1 will help the
reader picture a typical transition t on a canonical path from X to Y . The path Pi (which
happens to be a cycle) is the one currently being unwound; the paths P1, . . . , Pi−1 to the
left have already been processed, while the ones Pi+1, . . . , Pm are yet to be dealt with.

We now proceed to bound the “bottleneck” measure ρ̄(0) for these paths, using the
injective mapping technology introduced in Section 12.3. Let t be an arbitrary edge in
the Markov chain, i.e., a transition from M to M ′ 6=M , and let cp(t)= {(X,Y) : γXY 3 t}
denote the set of all canonical paths that use t . (We use the notation t in place of e here to
avoid confusion with edges of G.) Just as in Section 12.3, we shall obtain a bound on the
total weight of all paths that pass through t by defining an injective mapping ηt : cp(t)→
Ω . By analogy with the hypercube example in Section 12.3, what we would like to do is
to set ηt (X,Y)= X ⊕Y ⊕ (M ∪M ′); the intuition for this is that ηt(X,Y) should agree
with X on paths that have already been unwound, and with Y on paths that have not yet
been unwound (just as ηe(x, y) agreed with x on positions 1, . . . , i − 1 and with y on
positions i +1, . . . ,n−1). However, there is a minor complication concerning the path
that we are currently processing: in order to ensure that ηt (X,Y) is indeed a matching,
we may — as we shall see — have to remove from it the edge of X adjacent to the start
vertex of the path currently being unwound: we shall call this edge eXY t . This leads us
to the following definition of the mapping ηt :

ηt (X,Y)=
{X ⊕Y ⊕ (M ∪M ′)− eXY t , if t is type 0 and the

current path is a cycle;
X ⊕Y ⊕ (M ∪M ′), otherwise.

Figure 12.2 illustrates the encoding ηt (X,Y) that would result from the transition t on
the canonical path sketched in Figure 12.1.

Let us check that ηt (X,Y) is always a matching. To see this, consider the set of edges
A= X⊕Y ⊕(M ∪M ′), and suppose that some vertex, u say, has degree two in A. (Since
A⊆ X ∪Y , no vertex degree can exceed two.) Then A contains edges {u,v1},{u,v2} for

500 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

P1 PiX : Pi−1 · · ·Pi+1

t

Start vertex of (closed) path Pi

M : · · · · · ·

M ′:

Y :

· · ·

· · · · · ·

· · ·

...

...

Pm· · ·

FIGURE 12.1

A transition t in the canonical path from X to Y .

P1 Pi· · · Pi−1 Pi+1 Pm· · ·

FIGURE 12.2

The corresponding encoding ηt(X,Y).

distinct vertices v1,v2, and since A ⊆ X ∪Y , one of these edges must belong to X and
the other to Y . Hence, both edges belong to X⊕Y , which means that neither can belong
to M ∪M ′. Following the form of M ∪M ′ along the canonical path, however, it is clear
that there can be at most one such vertex u; moreover, this happens precisely when the
current path is a cycle, u is its start vertex, and t is type 0. Our definition of ηt removes
one of the edges adjacent to u in this case, so all vertices in ηt (X,Y) have degree at most
one, i.e., ηt(X,Y) is indeed a matching.

We now have to check that ηt is injective. It is immediate from the definition of ηt

12.4 A MORE COMPLEX EXAMPLE: MONOMER-DIMER SYSTEMS 501

that the symmetric difference X ⊕Y can be recovered from ηt (X,Y) using the relation

X ⊕Y =



ηt (X,Y)⊕ (M ∪M ′)+ eXY t, if t is type 0 and the

current path is a cycle;
ηt (X,Y)⊕ (M ∪M ′), otherwise.

Note that, once we have formed the set ηt (X,Y)⊕(M ∪M ′), it will be apparent whether
the current path is a cycle from the sense of unwinding. (Note that eXY t is the unique
edge that forms a cycle when added to the path.) Given X ⊕ Y , we can at once infer
the sequence of paths P1, P2, . . . , Pm that have to be unwound along the canonical path
from X to Y , and the transition t tells us which of these, Pi say, is the path currently
being unwound. The partition of X ⊕ Y into X and Y is now straightforward: X has
the same parity as ηt(X,Y) on paths P1, . . . , Pi−1, and the same parity as M on paths
Pi+1, . . . , Pm . Finally, the reconstruction of X and Y is completed by noting that X∩Y =
M− (X⊕Y), which is immediate from the definition of the paths. Hence, X and Y can
be uniquely recovered from ηt (X,Y), so ηt is injective.

We are almost done. However, the fact that ηt is injective is not sufficient in this case
because, in contrast to the hypercube example, the stationary distribution πλ is highly
non-uniform. What we require in addition is that ηt be “weight-preserving,” in the sense
that Q(t)πλ(ηt (X,Y))≈ πλ(X)πλ(Y). More precisely, we will show in a moment that

πλ(X)πλ(Y)≤ 2|E|λ′2 Q(t)πλ(ηt (X,Y)). (12.12)

First, let us see why we need a bound of this form in order to estimate ρ̄. We have

1

Q(t)

∑

γXY3t

πλ(X)πλ(Y)|γXY | ≤ 2|E|λ′2
∑

γXY3t

πλ(ηt (X,Y)) |γXY |

≤ 4|E|nλ′2
∑

γXY3t

πλ(ηt (X,Y))

≤ 4|E|nλ′2 , (12.13)

where the second inequality follows from the fact that the length of any canonical path
is bounded by 2n, and the last inequality from the facts that ηt is injective and πλ is a
probability distribution.

It remains for us to prove inequality (12.12). Before we do so, it is helpful to notice
that Q(t)= (2|E|)−1 min{πλ(M),πλ(M ′)}, as may easily be verified from the definition
of Mmatch(λ). We now distinguish four cases:

(i) t is a type 1 transition. Suppose M ′ = M − e. Then ηt (X,Y) = X ⊕Y ⊕M , so,
viewed as multisets, M ∪ηt (X,Y) and X ∪Y are identical. Hence, we have

πλ(X)πλ(Y)= πλ(M)πλ(ηt (X,Y))

= 2|E|Q(t)
min{πλ(M),πλ(M ′)} ×πλ(M)πλ(ηt (X,Y))

= 2|E|Q(t)max{1,πλ(M)/πλ(M ′)}πλ(M)πλ(ηt(X,Y))

≤ 2|E|λ′Q(t)πλ(ηt(X,Y)),

from which (12.12) follows.

502 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

(ii) t is a type 2 transition. This is handled by a symmetrical argument to (i) above,
with the roles of M and M ′ interchanged.

(iii) t is a type 0 transition and the current path is a cycle. Suppose M ′ = M+e−e′,
and consider the multiset M∪ηt (X,Y). Then ηt (X,Y)= X⊕Y ⊕(M+e)−eXY t ,
so the multiset M∪ηt (X,Y) differs from X ∪Y only in that e and eXY t are missing
from it. Thus, we have

πλ(X)πλ(Y)≤ λ′2πλ(M)πλ(ηt(X,Y))

= 2|E|λ′2 Q(t)πλ(ηt (X,Y)),

since in this case πλ(M) = πλ(M ′), and so Q(t) = (2|E|)−1πλ(M). Therefore,
(12.12) is again satisfied.

(iv) t is a type 0 transition and the current path is not a cycle. This is identical with (iii)
above, except that the edge eXY t does not appear in the analysis. Accordingly, the
bound is

πλ(X)πλ(Y)≤ 2|E|λ′Q(t)πλ(ηt (X,Y)).

This concludes our proof of (12.12). We may now deduce from (12.13), that ρ̄(0)≤
4|E|nλ′2. However, one additional observation will allow us to improve the bound to
ρ̄(0)≤ 4|E|nλ′, which is what we claimed in (12.11). Looking at the above case analysis
we see that, in all cases except case (iii), (12.12), and hence (12.13), actually hold with
λ′2 replaced by λ′. But in case (iii) we can argue that ηt (X,Y)must have such a restricted
form that

∑
γXY3t πλ(ηt (X,Y)) is bounded above by λ′−1. Using this fact in the final

inequality in (12.13), we get the improved upper bound of 4|E|nλ′ in this case, and hence
in all cases. This will complete our verification of the bound (12.11) on ρ̄(0).

To justify the above claim, note that ηt (X,Y) has at least two unmatched vertices,
namely the start vertex of the current cycle and the vertex that is common to both e
and e′. Moreover, in ηt (X,Y)⊕M these vertices are linked by an alternating path that
starts and ends with an edge of M . So we may associate with each matching ηt(X,Y)
another matching, say η′t (X,Y), obtained by augmenting ηt (X,Y) along this path. But
this operation is uniquely reversible, so all matchings η ′t (X,Y) created in this way are
distinct. Moreover, πλ(ηt (X,Y)) = λπλ(ηt (X,Y)). Hence we have

∑
πλ(ηt(X,Y)) =

λ−1∑πλ(η
′
t (X,Y)) ≤ λ−1, so

∑
πλ(ηt (X,Y)) ≤ λ′−1 as claimed.

MORE APPLICATIONS

12.5

In this section we review some further applications of the techniques described in Sec-
tion 12.3 to problems in combinatorial enumeration and integration. In each case, as with
the monomer-dimer problem of Section 12.4, the Markov chain Monte Carlo method
provides the only known basis for an efficient algorithm in the FPRAS sense.

12.5 MORE APPLICATIONS 503

12.5.1 THE PERMANENT

Historically, the first major application of the methods of Section 12.3 was to the approxi-
mation of the permanent function. The permanent of an n × n integer matrix
A = (ai j : 0≤ i, j ≤ n−1) is defined by

per A =
∑

π

n−1∏

i=0

ai,π(i) ,

where the sum is over all permutations π of [n]= {0, . . . ,n− 1}. For convenience, we
take A to be a 0,1-matrix, in which case the permanent of A has a simple combinatorial
interpretation: namely, per A is equal to the number of perfect matchings (1-factors) in
the bipartite graph G = (V1,V2,E), where V1 = V2 = [n], and (i, j) ∈ E iff ai j = 1.
Valiant [Val79a] demonstrated that evaluating the permanent of a 0,1-matrix is com-
plete for the class #P; thus, just as in the case of the monomer-dimer partition function,
we cannot expect to find an algorithm that solves the problem exactly in polynomial
time.13 Interest has therefore centered on finding computationally feasible approxima-
tion algorithms.

It turns out that the Markov chain Monte Carlo method can be used to construct
such an algorithm (in the FPRAS sense) for almost all instances of this problem. To state
the result precisely, we will use the perfect matching formulation. Let G = (V1,V2,E)
be a bipartite graph with |V1| = |V2| = n. A special role will be played in the result by
the number of near-perfect matchings in G, i.e., matchings with exactly two unmatched
vertices. Following the notation of the previous section, let us write m k = mk(G) for
the number of k-matchings in G. Then the number of perfect matchings is m n , and
the number of near-perfect matchings is mn−1. Jerrum and Sinclair [JS89] showed that
there exists a randomized approximation scheme for the number of perfect matchings m n

whose running time is polynomial in n, ε−1 and the ratio mn−1/mn.
Note that this algorithm is not in general an FPRAS, since there exist (n+n)-vertex

graphs G for which the ratio mn−1/mn is exponential in n. However, it turns out that
these examples are wildly atypical in the sense that the probability that a randomly
selected G on n+ n vertices violates the inequality mn−1/mn ≤ 4n tends to 0 as n→
∞.14 Thus, the above algorithm constitutes an FPRAS for almost all graphs; moreover,
the condition that the ratio mn−1/mn be bounded by a specified polynomial in n can be
tested for an arbitrary graph in polynomial time [JS89]. It is also known [Bro86] that
every sufficiently dense graph (specifically, those in which every vertex has degree at
least 1

2 n) satisfies mn−1/mn =O(n2). Moreover, it has recently been shown by Kenyon,
Randall, and Sinclair [KRS96] that the ratio mn−1/mn is guaranteed to be small for a
wide class of homogeneous graphs G, including the important case of geometric lattice
graphs in any number of dimensions. We should also point out that, although the above
description has been couched in terms of matchings in bipartite graphs because of the
connection with the permanent, everything extends to general 2n-vertex graphs.

13In contrast, as is well known, the determinant of an n × n matrix can be evaluated in O(n3)

arithmetic operations using Gaussian elimination.
14For more refined results along these lines, see Frieze [Friez89] or Motwani [Mot89].

504 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

It was Broder [Bro86, Mih89a] who first proposed a Markov chain Monte Carlo
approach to approximating the permanent via Markov chain simulation. His idea was to
sample perfect matchings in a bipartite graph G almost u.a.r. by simulating a Markov
chain whose states are perfect and near-perfect matchings in G; then, using a reduction
similar in spirit to the one described in Section 12.2 for the Knapsack problem, the
number of perfect matchings could be counted. Broder’s Markov chain was first proved
to be rapidly mixing (under the above condition on G) by Jerrum and Sinclair [JS89],
using a canonical paths argument as in Section 12.3.

An alternative, more natural approximation algorithm for the permanent follows
quite painlessly from our results about the monomer-dimer problem derived in the pre-
vious section. Note that mn is precisely the leading coefficient of the partition func-
tion ZG(λ) of the monomer-dimer system associated with G (see (12.5)). In the previous
section, we saw how to sample matchings in G from the distribution

πλ(M)= λ|M|

ZG(λ)
= λ|M|∑n

k=0 mkλk
(12.14)

for any desired λ > 0, in time polynomial in n and λ′ = max{λ,1}, by Monte Carlo
simulation of the Markov chain Mmatch(λ). We also saw how this fact can be used to
compute ZG(λ) to good accuracy in time polynomial in n and λ′. Suppose then that
we have computed a good estimate ẐG(λ) of ZG(λ). Then we can get a good estimator
for mn by sampling matchings from the distribution πλ and computing the proportion,
X , of the sample that are perfect matchings; since E X = mnλ

n/ZG(λ), our estimator is
Y = Xλ−n ẐG(λ).

The sample size required to ensure a good estimate depends on the variance of a
single sample, or more precisely on the quantity (E X)−1. Clearly, by making λ large
enough, we can make this quantity, and hence the sample size, small: this corresponds
to placing very large weight on the perfect matchings, so that their proportion can be
estimated well by random sampling. How large does λ have to be? This analysis is eased
by the beautiful fact that the sequence m0,m1, . . . ,mn is log-concave, i.e., mk−1mk+1 ≤
m2

k for k = 1,2, . . . ,n−1. (This is well known [HL72]; a direct combinatorial proof may
be found in [JS89].) As a consequence, it follows that m k−1/mk ≤mn−1/mn for all k, and
hence that mk/mn ≤ (mn−1/mn)

n−k . This means that, if we take λ≥ mn−1/mn, we get

E X = mnλ
n

ZG(λ)
= mnλ

n

∑n
k=0 mkλk

≥ 1

n+1
, (12.15)

which implies that the sample size required grows only linearly with n. Thus, it is enough
to take λ about as large as the ratio mn−1/mn. Since the time required to generate a sin-
gle sample grows linearly with λ (see Proposition 12.4), the running time of the overall
algorithm is polynomial in n, ε−1 and the ratio mn−1/mn , as claimed.

OPEN PROBLEM 12.2 Is there an FPRAS for the permanent of a general 0,1 ma-
trix? Note that this problem is not phrased as a question about the mixing time of a
specific Markov chain, and certainly the chain Mmatch(λ) described here is not directly
applicable: as we have seen, it seems to be useful only when the ratio mn−1/mn for the
associated bipartite graph is polynomially bounded. However, the Markov chain Monte
Carlo method seems to offer the best hope for a positive resolution of this question. Es-
sentially, the issue is whether the Markov chain Mmatch(λ) can be suitably adapted to

12.5 MORE APPLICATIONS 505

provide a general solution, or perhaps used as a “black box” following some ingenious
preprocessing of the input matrix. (This latter idea has been used in a weaker way by Jer-
rum and Vazirani [JV92] to obtain a randomized approximation scheme for the general
0,1 permanent whose running time, while still not polynomial, is asymptotically signif-
icantly faster than that of more naı̈ve methods.)

We conclude our discussion of the permanent by mentioning some extensions. First
of all, it is not hard to see, again using the log-concavity property, that the above tech-
nique can be extended to approximate the entire sequence (mk), or equivalently all the
coefficients of the monomer-dimer partition function [JS89]. The running time per co-
efficient is no worse than for mn . Secondly, many other approximate enumeration (and
sampling) problems can be reduced to enumeration of perfect matchings; examples in-
clude counting Hamiltonian cycles in dense or random graphs (Dyer, Frieze, and Jer-
rum [DFJ94], Frieze and Suen [FS92]), counting graphs with given degree sequence
(Jerrum and Sinclair [JS90a], Jerrum, McKay, and Sinclair [JMS92]), and counting Eu-
lerian orientations of an undirected graph (Mihail and Winkler [MW91]).

12.5.2 VOLUME OF CONVEX BODIES

A problem that has attracted much attention in the context of the Markov chain Monte
Carlo method is that of estimating the volume of a convex body in high-dimensional
space. Computing the volume of a polytope in n= 3 dimensions is not a computationally
demanding task, but the effort required rises dramatically as the number n of dimensions
increases. This empirical observation is supported by a result of Dyer and Frieze [DF88]
to the effect that evaluating the volume of a polytope exactly is #P-hard.

In contrast, by applying the Markov chain Monte Carlo method, Dyer, Frieze, and
Kannan [DFK91] were able to construct an FPRAS for the volume of a convex body in
Euclidean space of arbitrary dimension. The convex body K in question is presented
to the algorithm using a very general mechanism called a membership oracle: given
a point x , the membership oracle simply reveals whether or not x ∈ K . Other ways
of specifying the body K — for example as a list of vertices or (n − 1)-dimensional
facets — can be recast in the oracle formulation. The algorithm must also be provided
with a guarantee in the form of two balls, one contained in K and of non-zero radius,
and the other containing K . This seemingly technical condition is essential, for without
such a guarantee the task is hopeless.

There are several difficult technical points in the construction and analysis of the
volume approximation algorithm of Dyer et al., but, at a high enough level of abstraction,
the method is quite simple to describe. The idea is to divide space into n-dimensional
(hyper)cubes of side δ, and to perform a random walk on the cubes that lie within the
body K . Suppose the random walk is at cube C at time t . A cube C ′ that is orthogonally
adjacent to C is selected uniformly at random; if C ′ ∈ K then the walk moves to C ′,
otherwise it stays at C . It is easy to check that the walk (or something close to it) is
ergodic, and that the stationary distribution is uniform on cubes in K . The cube size δ is
selected so as to provide an adequate approximation to K , while permitting the random
walk to “explore” the state space within a reasonable time. Rapid mixing (i.e., in time

506 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

polynomial in n) is proved via the conductance argument of Section 12.3, by considering
the geometry of the state space of the random walk and applying classical isoperimetric
inequalities.

Once the sampling problem has been solved, the volume of K can be computed by
the technique of Section 12.2. Let B0 ⊂ B1 ⊂ ·· · ⊂ Bm be a sequence of concentric balls
chosen so that B0 ⊆ K ⊆ Bm and the volume of Bi exceeds that of Bi−1 by (say) a factor
of 2. Consider the sequence of convex bodies

B0 = K ∩ B0 ⊆ K ∩ B1 ⊆ ·· · ⊆ K ∩ Bm = K . (12.16)

The volume of the first is known, while the ratios of volumes of successive bodies can
be estimated by Monte Carlo sampling using simulation of the random walk described
earlier. Random sampling is effective in this context because the volumes of adjacent
bodies in sequence (12.16) differ by a factor of at most 2. By multiplying the estimates
for the various ratios, the volume of the final body K ∩Bm = K may be computed to any
desired degree of approximation.

Although there are many situations in which a source of random bits seems to aid
computation, the current example is particularly interesting in that randomness is of
provable value. It has been shown by Elekes [Elek86] that a deterministic algorithm that
is restricted to a subexponential number of oracle calls is unable to obtain a good (say,
to within a ratio of 2) approximation to the volume of a convex body.

The close relationship of volume estimation to (approximate) multi-dimensional
integration has provided strong practical impetus to research in this area. Since the ap-
pearance of the original paper of Dyer et al., much effort has gone into extending the
algorithm to a wider class of problems, and into reducing its running time, which, though
polynomial in n, is still rather high in practical terms. Applegate and Kannan [AK91]
have generalized the algorithm to the integration of log-concave functions over convex
regions in arbitrary dimensional space, while Dyer and Frieze [DF91], and Lovász and
Simonovits [LS93] have devised many improvements that have successively reduced the
time complexity of the algorithm. The success of the latter pursuit may be judged from
the dramatic improvement in the dependence of the time-complexity on the dimension n:
from O(n27) for the original algorithm of Dyer et al., to Õ(n7) as claimed recently by
Kannan, Lovász, and Simonovits [KLS94a].15 Some of the ideas that have led to these
improvements are sketched below; for more detail the reader is referred to Kannan’s sur-
vey article [Kan94], and the references therein.

One source of inefficiency in the early approach was that the random walk in K
could, in principle, get stuck for long periods near “sharp corners” of K . Indeed, in the
first algorithm, Dyer et al. found it necessary to “round off” the corners of K before sim-
ulating the random walk. Applegate and Kannan obtained a substantial improvement in
efficiency by providing the random walk with a fuzzy boundary. Rather than estimating
the volume of K directly, their version of the algorithm estimates the integral of a func-
tion F that takes the value 1 on K , and decays to 0 gracefully outside K . The random
walk on cubes is modified so that its stationary distribution is approximately proportional

15The Õ() notation hides not merely constants, but also arbitrary powers of logn. Kannan et al.’s
algorithm requires just Õ(n5) oracle calls, but the cost of effecting a single step of their random walk
may be as high as O(n2).

12.5 MORE APPLICATIONS 507

to the function F . As we saw in Section 12.4, in the context of the matching Markov
chain Mmatch(λ), this end is easily achieved by using a Metropolis-style rule to determine
transition probabilities. Provided F decays sufficiently rapidly outside K , the integral
of F over the whole of Rn will be a close approximation to the volume of K .

Another strategy that has been employed in the pursuit of efficiency is to attempt
to reduce the length m of sequence (12.16), which amounts to arranging for the extreme
balls B0 and Bm to be as close as possible in volume. In the earlier papers, the body K
is subjected to a linear transformation that allows the transformed convex body to be
sandwiched between balls whose radii differ by a factor O(n3/2). By contenting them-
selves with a less demanding notion of “approximate sandwiching,” Kannan, Lovász,
and Simonovits [KLS94b] have recently reduced this factor to O(

√
n), which is best

possible. Observe that this improvement in the sandwiching ratio reduces the length of
sequence (12.16) roughly by a factor n.

Finally, much thought has gone into potentially more efficient random walks for
sampling from within K . This is an attractive line of inquiry, as the original “cubes
walk,” which only ever makes short steps, intuitively seems rather inefficient. Lovász
and Simonovits [LS93] consider instead a “ball walk” with continuous state space, which
operates as follows. Suppose x ∈ K is the position of the walk at time t , and denote by
B(x,δ) the ball with centre x and radius δ. The probability density of the position of
the walk at time t +1, conditional on its position at time t being x , is uniform over the
region K ∩ B(x,δ), and zero outside. The parameter δ is chosen to exploit the trade-off
discussed briefly in the context of the cubes walk. The conductance argument can be
extended to the continuous case without essential change. The ball walk saves a factor n
in the number of oracle calls; unfortunately, as the moves of the random walk are now
more complex than before, there is no saving in net time complexity (i.e., excluding
oracle calls).

An interesting problem related to volume estimation is that of approximately count-
ing contingency tables: given m + n positive integers r1, . . . ,rm and c1, . . . ,cn , com-
pute an approximation to the number of m × n non-negative integer matrices with
row-sums r1, . . . ,rm and column-sums c1, . . . ,cn . This problem arises in the interpre-
tation of the results of certain kinds of statistical experiment; see, for example, Diaconis
and Efron [DE85].

It is easy to see that the contingency tables with given row- and column-sums are
in 1-1 correspondence with integer lattice points contained in an appropriately defined
polytope of dimension nm−n−m. We might hope that a sufficiently uniform distribu-
tion on lattice points could be obtained by sampling from the (continuous) convex poly-
tope and rounding to a nearby lattice point. Dyer, Kannan, and Mount [DKM95] show
that this can be done, provided that the row- and column-sums are sufficiently large;
specifically, that each sum is at least (n+m)nm. The case of small row- and column-
sums remains open. There is no hope of an FPRAS for unrestricted 3-dimensional con-
tingency tables (unless NP= RP), as Irving and Jerrum [IJ94] have shown that deciding
feasibility (i.e, whether there is at least one realization of the contingency table) is NP-
complete in 3-dimensions, even when the row- column- and file-sums are all either 0 or 1.

OPEN PROBLEM 12.3 An elegant direct approach to sampling contingency tables
has been proposed by Diaconis. Consider the Markov chain MCT, whose state space
is the set of all matrices with specified row and column sums, and whose transition

508 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

probabilities are defined as follows. Let the current state (matrix) be A = (ai j). Select
a pair of rows (i, i ′) with i 6= i ′, and a pair of columns (j, j ′) with j 6= j ′, both u.a.r.
Form a new matrix A′ from A by incrementing by one the array elements ai j ,ai ′ j ′ ,
and decrementing by one the elements ai j ′,ai ′ j . Note that A′ has the same row- and
column-sums as A. If A′ is non-negative then we accept it as the next state; otherwise
the chain remains at state A. It is easy to verify that MCT is ergodic and reversible
with uniform stationary distribution. Moreover, it appears to work well in practice as
a uniform sampling procedure for contingency tables. However, its mixing time is not
known to be bounded by any polynomial in the size of the input. (For obvious reasons,
we must assume that the row- and column-sums are expressed in unary notation when
defining the input size.)

12.5.3 STATISTICAL PHYSICS

We have already seen, in Section 12.4, a detailed example of the use of the Markov
chain Monte Carlo method in statistical physics. It was in fact in this area that the first
computational use of the technique was made, and today Markov chain simulations
related to physical systems account for vast quantities of CPU time on high performance
machines. These methods, while often ingenious, are hardly ever statistically rigorous,
so the numerical results obtained from them have to be treated with some degree of
caution. One of the most exciting applications of the analytical techniques presented
here is the potential they open up for the rigorous quantification of these methods. In
this subsection, we sketch the progress that has been made in this direction to date.

The most intensively studied model in statistical physics is the Ising model, intro-
duced in the 1920s by Lenz and Ising as a means of understanding the phenomenon of
ferromagnetism. An instance of the Ising model is specified by giving a set of n sites, a
set of interaction energies Vi j for each unordered pair of sites i, j , a magnetic field in-
tensity B, and an inverse temperature β. A configuration of the system defined by these
parameters is one of the 2n possible assignments σ of±1 spins to each site. The energy
of a configuration σ is given by the Hamiltonian H (σ), defined by

H (σ) =−
∑

{i, j}
Vi jσiσ j − B

∑

k

σk .

The more interesting part of H (σ) is the first sum, which consists of a contribution from
each pair of sites. The contribution from the pair i, j is dependent on the interaction
energy Vi j , and whether the spins at i and j are equal or unequal. The second sum has a
contribution from each site i whose sign depends on the sign of the spin at i . In physically
realistic applications, the sites are arranged in a regular fashion in 2- or 3-dimensional
space, and Vi j is non-zero only for “adjacent” sites. From a computational point of view,
this special structure seems difficult to exploit. For more detail on this and other models
in statistical physics, viewed from a computational perspective, consult the survey by
Welsh [Wel90].

A central problem in the theory is evaluating the partition function Z =∑
σ exp(−βH (σ)), where the sum is over all possible configurations σ . This is analo-

gous to the monomer-dimer partition function in Section 12.4, which is also a weighted

12.5 MORE APPLICATIONS 509

sum over configurations. The significance of Z is that it is the normalizing factor in the
Gibbs distribution, which assigns probability exp(−βH (σ))/Z to each state (configu-
ration) σ in the steady state. Other problems relate to the evaluation of the expectation
of certain random variables of σ , when σ is sampled according to the Gibbs distribution:
the mean magnetic moment and mean energy are two such.

When the interaction energies are unconstrained (this corresponds to a so-called spin
glass) the partition function is hard even to approximate [JS93], so we restrict attention
to the important ferromagnetic case, where Vi j ≥ 0 for all pairs {i, j} of sites. Even here,
exact computation of the partition function is #P-complete [JS93], so it is again natu-
ral to ask whether an FPRAS exists. Jerrum and Sinclair [JS93] answered this question
in the affirmative, and in addition presented an FPRAS for the mean magnetic moment
and mean energy. Applying the Markov chain Monte Carlo method to the Ising model
required an additional twist, as the “natural” random walk on configurations, in which
two configurations are adjacent if they differ in just one spin, is not rapidly mixing.16

The twist is to simulate an apparently unrelated Markov chain on a different set of con-
figurations — based on edges rather than vertices — which happens to have essentially
the same partition function as the Ising model proper. Using the canonical paths argu-
ment, it can be shown that the new, edge-based Markov chain is rapidly mixing. The
twist just described is one factor that makes this application one of the most intricate so
far devised.

In addition to the Ising model and monomer-dimer systems, other models in sta-
tistical physics that have been solved in the FPRAS sense are the six-point ice model
[MW91] and the self-avoiding walk model for linear polymers [BS85, RS94]. The for-
mer problem is again connected with matchings in a graph, but rather remotely, and a
fair amount of work is required to establish and verify the connection [MW91]. The
latter makes use of a Markov chain that is much simpler in structure to those consid-
ered here [BS85], and whose analysis requires a far less sophisticated application of the
canonical paths approach. The analysis in fact relies on a famous conjecture regarding
the behavior of self-avoiding walks: the resulting algorithm is somewhat novel in that it
either outputs reliable numerical answers, or produces a counterexample to the conjec-
ture [RS94].

12.5.4 MATROID BASES: AN OPEN PROBLEM

A particularly appealing open problem in this area, and one that would be very rich in
terms of consequences, is to determine useful bounds on the mixing time of the basis-
exchange Markov chain for a general matroid. (A matroid is an algebraic structure that
provides an abstract treatment of the concept of linear independence.) The states of
this Markov chain are the bases (maximum independent sets) of a given matroid, and
a transition is available from base B to base B ′ if the symmetric difference of B and B ′
consists of precisely two elements of the ground set. All transition probabilities are equal,
so the chain is ergodic and reversible with uniform stationary distribution.

16A more elaborate random walk on spin configurations proposed by Swendsen and Wang [SW87]
may be rapidly mixing, but nothing rigorous is known.

510 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

A concrete example is provided by the graphic matroid associated with an undi-
rected graph G. In this case, the bases are spanning trees of G, and a transition from
a given tree T is effected by adding a single edge (selected u.a.r.) to T , thus creating a
cycle, and then breaking the cycle by deleting one of its edges (selected u.a.r.). The basis-
exchange Markov chain is known to be rapidly mixing for graphic matroids, and, some-
what more generally, for matroids satisfying a certain “balance condition” (see Feder and
Mihail [FM92]). A proof of rapid mixing in the general case would imply the existence
of an FPRAS for a number of important problems in combinatorial enumeration, all of
which are #P-complete, including counting connected spanning subgraphs of a graph
(network reliability), forests of given size in a graph, and independent subsets of vectors
in a set of n-vectors over GF(2).

THE METROPOLIS ALGORITHM AND
SIMULATED ANNEALING

12.6

We conclude this survey with a rather different application of the Markov chain Monte
Carlo method. Like the applications we have discussed so far, Markov chain simulation
will again be used to sample from a large combinatorial set according to some desired
probability distribution. However, whereas up to now we have used this random sam-
pling to estimate the expectations of suitably defined random variables over the set, we
will now use it to optimize a function. This is the key ingredient of several randomized
search heuristics in combinatorial optimization, the most celebrated of which is known
as simulated annealing.

As usual, let Ω be a large combinatorial set, which we think of now as the set of
feasible solutions to some optimization problem. Let f :Ω→R+ be an objective func-
tion defined on Ω ; our goal is to find a solution x ∈ Ω for which the value f (x) is
maximum (or, symmetrically, minimum). As an illustrative example, let us take the max-
imum cut problem. Here Ω is the set of partitions of the vertices of a given undirected
graph G = (V,E) into two sets S and S = V − S. Our goal is to find a partition that
maximizes the number of edges between S and S.

Here is a very general approach to problems of this kind. First, we define a con-
nected, undirected graph H on vertex set Ω : this graph is often referred to as a neigh-
borhood structure. Typically, the neighbors of a solution x ∈Ω are close to x under some
measure of distance that is natural to the combinatorial structures in question: for exam-
ple, in the maximum cut problem, the neighbors of a particular partition (S, S)might be
all partitions of the form (S−s, S+s) and (S+ t, S− t) obtained by moving one element
across the partition. Next we construct a Markov chain in the form of a biased random
walk on the graph H of a special form. Let d(x) denote the degree of vertex x in H , and
let D be an upper bound on the maximum degree. Then transitions from any state x ∈Ω
are made as follows:

I. with probability 1
2 let y = x ; otherwise,

12.6 THE METROPOLIS ALGORITHM AND SIMULATED ANNEALING 511

II. select y ∈Ω according to the distribution

Pr(y)=




1
D if y is a neighbor of x ;
1− d(x)

D if y = x ;
0 otherwise;

III. go to y with probability min{1,α f (y)− f (x)}.

Here α ≥ 1 is a fixed parameter whose role will become clear shortly. We shall refer to
this Markov chain as MC(α). Note that MC(α) always accepts transitions to neighbors
with better values of f , but rejects transitions to poorer neighbors with a probability that
depends on α.17

Let us observe some general properties of this Markov chain. First, since H is
connected, the chain is irreducible, and since all self-loop probabilities are non-zero it is
aperiodic; hence it is ergodic. Now define

πα(x)= α
f (x)

Z(α)
, for x ∈Ω, (12.17)

where Z(α) is a normalizing factor to make πα a probability distribution. Then it is an
easy matter to check that the chain is reversible with respect to πα, i.e., the transition
probabilities P(x, y) satisfy the detailed balance condition

πα(x)P(x, y)= πα(y)P(y,x), for all x, y ∈Ω.
All this implies that the Markov chain converges to the stationary distribution πα . A
Markov chain of this form is known as a Metropolis process, in honor of one of its
inventors [Met53].

Now let us examine the stationary distribution more closely. From (12.17) it is clear
that, for any value of α ≥ 1, πα is a monotonically increasing function of f (x). Hence it
favors better solutions. Moreover, the effect of this bias increases with α: as α→∞,
the distribution becomes more sharply peaked around optimal solutions. At the other
extreme, when α = 1 the distribution is uniform overΩ .

Our optimization algorithm is now immediate: simply simulate the Markov chain
MC(α) for some number, T , of steps, starting from an arbitrary initial solution, and out-
put the best solution seen during the simulation. We shall refer to this algorithm as the
Metropolis algorithm at α. How should we choose the parameter α? For sufficiently
large T , we can view the algorithm as essentially sampling from the stationary distri-
bution πα . If we want to be reasonably sure of finding a good solution, we want to make
α small so that πα is well concentrated. On the other hand, intuitively, as α increases the
chain becomes less mobile and more likely to get stuck in local optima: indeed, in the
limit as α→∞, MC(α) simply becomes a very naı̈ve “randomized greedy” algorithm.
This tradeoff suggests that we should use an intermediate value of α.

To precisely quantify the performance of the Metropolis algorithm at a given value
of α, we would need to analyze the expected hitting time from the initial solution to the
set of optimal (or near-optimal) solutions. However, we can get an upper bound on the
time taken to find a good solution by analyzing the mixing time. Certainly, if MC(α) is
close to stationarity after T steps, then the probability that we find a good solution is at

17In the case where we wish to minimise f , everything we say carries over with α replaced by α−1.

512 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

least the weight of such solutions in the stationary distributionπα. We shall illustrate this
approach by adapting the matching example of Section 12.4, for which we have already
developed all the necessary technology.

Consider the classical optimization problem of finding a matching of maximum
cardinality in a graph. ThusΩ is the set of all matchings in a graph G = (V,E), and we
are trying to maximize the function f :Ω→ R given by f (M)= |M|. It is well known
that this problem can be solved in polynomial time, but the algorithm for non-bipartite
graphs is far from trivial [Edm65]. We shall show that the much simpler Metropolis
algorithm solves the problem for most graphs, and finds a good approximate solution for
all graphs, with high probability in polynomial time. The key to the algorithm’s success
is a carefully chosen value of the parameter α.

We have in fact already defined a suitable Metropolis process for the maximum
matching problem: it is the Markov chain Mmatch(λ) from Section 12.4. A glance at
the definition of this chain reveals that it is a Metropolis process whose neighborhood
structure is defined by edge additions, deletions, and exchanges, and with D = |E|
and α = λ. We saw in Section 12.4 that Mmatch(λ) gets very close to its stationary
distribution, πλ, in time polynomial in λ and the number of vertices in G.

Let us first consider the case of 2n-vertex graphs G for which the ratio m n−1/mn

is polynomially bounded, i.e., mn−1/mn ≤ q(n) for some fixed polynomial q.18 (Of
course, for such graphs maximum matchings are perfect matchings.) As we have seen
in Section 12.5.1, this actually covers almost all graphs, as well as several interesting
special families such as dense graphs. We also saw in Section 12.5.1 that, if we take λ=
q(n)≥ mn−1/mn, then the weight of perfect matchings in the stationary distribution πλ
is at least 1

n+1 (see equation (12.15)). Hence, by running the Metropolis algorithm O(n)
times (or, alternatively, by increasing λ by a constant factor), we can be almost certain
of finding a perfect matching. The running time for each run is polynomial in n and λ=
q(n), and hence polynomial in n. The same result holds more generally for graphs with
a maximum matching of size k0, provided that mk0−1/mk0 is polynomially bounded.

The above analysis breaks down for arbitrary graphs because the value of λ required
to find a maximum matching could be very large. However, for arbitrary graphs, we
can prove the weaker result that the Metropolis algorithm will find an approximately
maximum matching in polynomial time. Let G be an arbitrary graph, and suppose we
wish to find a matching in G of size at least k = d(1− ε)k0e, where k0 is the size of
a maximum matching in G and ε ∈ (0,1). We claim that, if we run the Metropolis
algorithm for a polynomial number of steps with λ = |E|(1−ε)/ε, then with probability
at least 1

n+1 we will find such a matching. (Note, however, that the running time is
exponential in the accuracy parameter ε−1.) Once again, the success probability can be
boosted by repeated trials, or by increasing λ by a small constant factor.

To justify the above claim, we use the log-concavity property of matchings and the
fact that mk0 ≥ 1 to deduce that

mk−1 = mk0

k0∏

j=k

m j−1

m j
≥
(mk−1

mk

)k0−k+1
. (12.18)

But since j -matchings in G are subsets of E of size j , there is also the crude upper bound

18Recall that mk denotes the number of k-matchings in G.

12.6 THE METROPOLIS ALGORITHM AND SIMULATED ANNEALING 513

mk−1 ≤ |E|k−1. Hence, from (12.18) we conclude that
mk−1

mk
≤ |E|(1−ε)/ε = λ.

Now we use log-concavity again to argue that, for 0 ≤ i < k, we have m i/mk ≤
(mk−1/mk)

k−i ≤ λk−i . It follows that the weight of i -matchings in the stationary dis-
tribution πλ is bounded above by the weight of the k-matchings. Hence, the probability
of being at a matching of size k or more is at least 1

n+1 , as we claimed.
Rigorous results like this about the performance of the Metropolis algorithm on

non-trivial optimization problems are few and far between. The above result on approx-
imating maximum matchings was obtained via a more complex argument by Sasaki
and Hajek [SH88], who also show that this result is best possible in the sense that the
Metropolis algorithm cannot be expected to find a truly maximum matching in arbitrary
graphs in polynomial time, even if the algorithm is allowed to vary the parameter α in
an arbitrarily complicated fashion. Negative results of a similar flavor for other prob-
lems can be found in [Sas91] and [Jer92]. Jerrum and Sorkin [JS93] prove a positive
result for the graph bisection problem analogous to the one above for finding a maximum
matching in random graphs: they show that, for almost every input graph in a suitable
random graph model, the Metropolis algorithm run at a carefully chosen value of the
parameter α will find a minimum bisection of the graph in polynomial time with high
probability. Their approach is different from the one presented here, in that they argue
directly about the hitting time rather than analyzing the mixing time as we have done.
Finally, a recent paper of Kannan, Mount, and Tayur [KMT94] shows how the Metropo-
lis algorithm can be used to efficiently find approximate solutions to a class of convex
programming problems.

We close with a brief discussion of the popular optimization heuristic known as sim-
ulated annealing, first proposed in [KGV83]. This heuristic is widely used in combina-
torial optimization: for a comprehensive survey of experimental results, see for example
[JAMS88, JAMS91]. Essentially, the idea is to simulate the Metropolis process while at
the same time varying the parameter α according to a heuristic scheme. Thus, a simu-
lated annealing algorithm is specified by a Metropolis process MC(α), together with an
increasing function α : N→ [1,∞). At time t , the process makes a transition according
to MC(α(t)); we can therefore view it as a time-inhomogeneous Markov chain on Ω .
After some specified number of steps, the algorithm terminates and returns the best so-
lution encountered so far.

The function α is usually referred to as a cooling schedule, in accordance with the
interpretation of α−1 as a “temperature.” Increasing α thus corresponds to decreasing
temperature, or cooling. The term “simulated annealing” derives from the analogy with
the physical annealing process, in which a substance such as glass is heated to a high
temperature and then gradually cooled, thereby “freezing” into a state whose energy is
locally minimum. If the cooling is done sufficiently slowly, this state will tend to be a
global energy minimum, corresponding to maximum strength of the solid.

This more complex process is even harder to analyze than the Metropolis algorithm
itself. Since the Markov chain is not time-homogeneous, even the question of asymptotic
convergence is non-trivial. Holley and Stroock [HS88] proved the existence of a cooling
schedule that guarantees convergence to a global optimum: however, the schedule is so
slow that the time taken to converge is comparable with the size ofΩ , which makes the

514 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

algorithm uncompetitive with naı̈ve exhaustive search. It remains an outstanding open
problem to exhibit a natural example in which simulated annealing with any non-trivial
cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen
fixed value of α.

Acknowledgments Mark Jerrum was supported in part by a Nuffield Foundation
Science Research Fellowship, Grant GR/F 90363 of the UK Science and Engineering
Research Council, and EU Esprit Working Group No. 7097, “RAND”. Alistair Sinclair
was supported in part by NSF Grant CCR-9505448 and a UC Berkeley Faculty Research
Grant.

REFERENCES

[Ald81] D. Aldous. Random walks on finite groups and rapidly mixing Markov chains,
Séminaire de Probabilités XVII, Springer Lecture Notes in Mathematics 986,
1981/82, 243–297.

[Ald82] D. Aldous. Some inequalities for reversible Markov chains, Journal of the London
Mathematical Society, 25(2):564–576, 1982.

[Ald87] D. Aldous. On the Markov chain simulation method for uniform combinatorial
distributions and simulated annealing, Probability in the Engineering and Infor-
mational Sciences, 1:33–46, 1987.

[Ald90] D. Aldous. The random walk construction for spanning trees and uniform labeled
trees, SIAM Journal on Discrete Mathematics, 3:450–465, 1990.

[AD86] D. Aldous and P. Diaconis. Shuffling cards and stopping times, American Mathe-
matical Monthly, 93:333–348, 1986.

[Alon86] N. Alon. Eigenvalues and expanders, Combinatorica, 6:83–96, 1986.

[AM85] N. Alon and V.D. Milman. λ1, isoperimetric inequalities for graphs and supercon-
centrators, Journal of Combinatorial Theory Series B, 38:73–88, 1985.

[AK91] D. Applegate and R. Kannan. Sampling and integration of near log-concave func-
tions, Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
156–163, 1991.

[BS85] A. Berretti and A.D. Sokal. New Monte Carlo method for the self-avoiding walk,
Journal of Statistical Physics, 40:483–531, 1985.

[Bro86] A.Z. Broder. How hard is it to marry at random? (On the approximation of the
permanent), Proceedings of the 18th Annual ACM Symposium on Theory of Com-
puting, ACM Press, 50–58, 1986. Erratum in Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, p. 551, 1988.

[Bro89] A.Z. Broder. Generating random spanning trees, Proceedings of the 30th Annual
IEEE Symposium on Foundations of Computer Science, 442–447, 1989.

[BDJ96] R. Bubley, M. Dyer, and M. Jerrum. A new approach to polynomial-time random
walks for volume computation (preprint), 1996.

[Che70] J. Cheeger. A lower bound for the smallest eigenvalue for the Laplacian, Problems
in Analysis (R.C. Gunning, ed.), Princeton University Press, Princeton NJ, 1970,
195–199.

REFERENCES 515

[CdBS55] E.G.D. Cohen, J. de Boer, and Z.W. Salsburg. A cell-cluster theory for the liquid
state II, Physica, XXI:137–147, 1955.

[DLMV88] P. Dagum, M. Luby, M. Mihail, and U. V. Vazirani. Polytopes, permanents and
graphs with large factors, Proceedings of the 29th Annual IEEE Symposium on
Foundations of Computer Science, 412–421, 1988.

[Dia88] P. Diaconis. Group representations in probability and statistics, Lecture Notes
Monograph Series Vol. 11, Institute of Mathematical Statistics, Hayward, CA,
1988.

[DE85] P. Diaconis and B. Efron. Testing for independence in a two-way table, Annals of
Statistics, 13:845–913, 1985.

[DSC93] P. Diaconis and L. Saloff-Coste. Comparison techniques for reversible Markov
chains, Annals of Applied Probability, 3:696–730, 1993.

[DS91] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains,
Annals of Applied Probability, 1:36–61, 1991.

[DF88] M.E. Dyer and A.M. Frieze. On the complexity of computing the volume of a
polyhedron, SIAM Journal on Computing, 17:967–975, 1988.

[DF91] M. Dyer and A. Frieze. Computing the volume of convex bodies: a case where
randomness provably helps, Probabilistic Combinatorics and its Applications,
Proceedings of AMS Symposia in Applied Mathematics, 44:123–170, 1991.

[DFJ94] M. Dyer, A. Frieze, and M. Jerrum. Approximately counting Hamilton cycles
in dense graphs, Proceedings of the 4th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 336–343, 1994. Full version to appear in SIAM Journal on
Computing.

[DFK91] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies, Journal of the ACM, 38:1–17, 1991.

[DFKKPV93] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic, and U. Vazirani. A
mildly exponential time algorithm for approximating the number of solutions to a
multidimensional knapsack problem, Combinatorics, Probability and Computing,
2:271–284, 1993.

[DKM95] M. Dyer, R. Kannan, and J. Mount. Sampling contingency tables (preprint), 1995.

[Edm65] J. Edmonds. Paths, trees and flowers, Canadian Journal of Mathematics, 17:449–
467, 1965.

[Elek86] G. Elekes. A geometric inequality and the complexity of computing volume, Dis-
crete and Computational Geometry, 1:289–292, 1986.

[FM92] T. Feder and M. Mihail. Balanced matroids, Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, 26–38, 1992.

[Fish61] M.E. Fisher. Statistical mechanics of dimers on a plane lattice, Physics Review,
124:1664–1672, 1961.

[Friez89] A.M. Frieze. A note on computing random permanents (unpublished manuscript),
1989.

[FS92] A. Frieze and S. Suen. Counting the number of Hamiltonian cycles in random
digraphs, Random Structures and algorithms, 3:235–241, 1992.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, CA, 1979, p. 176.

516 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

[Gill93] D. Gillman. A Chernoff bound for random walks on expander graphs, Proceedings
of the 34th Annual IEEE Conference on Foundations of Computer Science, 680–
691, 1993.

[Gugg52] E.A. Guggenheim. Mixtures, Clarendon Press, Oxford, 1952.

[HL72] O.J. Heilmann and E.H. Lieb. Theory of monomer-dimer systems, Communica-
tions in Mathematical Physics, 25:190–232, 1972.

[HS88] R. Holley and D.W. Stroock. Simulated annealing via Sobolev inequalities, Com-
munications in Mathematical Physics, 115:553–569, 1988.

[IJ94] R.W. Irving and M.R. Jerrum. 3-D statistical data security problems, SIAM Jour-
nal on Computation, 23:170-184, 1994.

[Jer87] M.R. Jerrum. Two-dimensional monomer-dimer systems are computationally
intractable, Journal of Statistical Physics, 48:121–134, 1987. Erratum in Journal
of Statistical Physics, 59:1087–1088, 1990.

[Jer92] M.R. Jerrum. Large cliques elude the Metropolis process, Random Structures and
Algorithms, 3:347–359, 1992.

[Jer93b] M. Jerrum. Uniform sampling modulo a group of symmetries using Markov chain
simulation, Expanding Graphs, DIMACS Series in Discrete Mathematics and
Computer Science 10 (J. Friedman, ed.), American Mathematical Society, 1993,
37–47.

[Jer94] M. Jerrum. The computational complexity of counting, Proceedings of the In-
ternational Congress of Mathematicians, Zürich 1994, Birkhäuser, Basel, 1995,
1407–1416.

[Jer95] M. Jerrum. A very simple algorithm for estimating the number of k-colourings of
a low-degree graph, Random Structures and Algorithms, 7:157–165, 1995.

[JMS92] M. Jerrum, B. McKay, and A. Sinclair. When is a graphical sequence stable?
Random Graphs 2 (A. Frieze and T. Łuczak, eds), Wiley, 1992, 101–115.

[JS89] M.R. Jerrum and A.J. Sinclair. Approximating the permanent, SIAM Journal on
Computing, 18:1149–1178, 1989.

[JS90a] M.R. Jerrum and A.J. Sinclair. Fast uniform generation of regular graphs, Theo-
retical Computer Science, 73:91–100, 1990.

[JS93] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the
Ising model, SIAM Journal on Computing, 22:1087–1116, 1993.

[JS94] M. Jerrum and G.B. Sorkin. Simulated annealing for graph bisection, Proceedings
of the 34th Annual IEEE Conference on Foundations of Computer Science, Com-
puter Society Press, 94–103, 1993.

[JVV86] M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combinato-
rial structures from a uniform distribution, Theoretical Computer Science,
43:169–188, 1986.

[JV92] M. Jerrum and U. Vazirani. A mildly exponential approximation algorithm for the
permanent, Proceedings of the 33rd Annual IEEE Conference on Foundations of
Computer Science, Computer Society Press, 320–326, 1992.

[JAMS88] D.S. Johnson, C.R. Aragon, L.A. McGeogh, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; Part I, graph partitioning, Op-
erations Research, 37:865–892, 1988.

REFERENCES 517

[JAMS91] D.S. Johnson, C.R. Aragon, L.A. McGeogh, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; part II, graph coloring and num-
ber partitioning, Operations Research, 39:378–406, 1991.

[Kah94] N. Kahale. Large deviation bounds for Markov chains, DIMACS Technical Re-
port 94-39, June 1994. To appear in Combinatorics, Probability and Computing.

[Kah95] N. Kahale. A semidefinite bound for mixing rates of Markov chains, DIMACS
Technical Report 95-41, September 1995.

[Kan94] R. Kannan. Markov chains and polynomial time algorithms. Proceedings of the
35th Annual IEEE Symposium on Foundations of Computer Science, 656–671,
1994.

[KLS94a] R. Kannan, L. Lovász, and M. Simonovits. Random walks and a faster algorithm
for convex sets (manuscript).

[KLS94b] R. Kannan, L. Lovász, and M. Simonovits. Isoperimetric problems for convex sets
and a localization lemma, Discrete and Computational Geometry, 13:541–559,
1995.

[KMT94] R. Kannan, J. Mount, and S. Tayur. A randomized algorithm to optimize over
certain convex sets, Mathematics of Operations Research, 20:529–550, 1995.

[KL83] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and reliability
problems, Proceedings of the 24th Annual IEEE Symposium on Foundations of
Computer Science, 56–64, 1983.

[KK90] A. Karzanov and L. Khachiyan. On the conductance of order Markov chains,
Technical Report DCS 268, Rutgers University, June 1990.

[Kast61] P.W. Kasteleyn. The statistics of dimers on a lattice I: The number of dimer ar-
rangements on a quadratic lattice, Physica, 27:1209–1225, 1961.

[KRS96] C. Kenyon, D. Randall, and A. Sinclair. Approximating the number of monomer-
dimer coverings of a lattice, Journal of Statistical Physics, 83:637–659, 1996.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing, Science, 220:671–680, 1983.

[LS88] G.F. Lawler and A.D. Sokal. Bounds on the L 2 spectrum for Markov chains and
Markov processes: a generalization of Cheeger’s inequality, Transactions of the
American Mathematical Society, 309:557–580, 1988.

[LP86] L. Lovász and M.D. Plummer. Matching Theory, North-Holland, Amsterdam,
1986.

[LS93] L. Lovász and M. Simonovits. Random walks in a convex body and an improved
volume algorithm, Random Structures and Algorithms, 4:359–412, 1993.

[LRS95] M. Luby, D. Randall, and A. Sinclair. Markov chain algorithms for planar lattice
structures, Proceedings of the 36th Annual IEEE Symposium on Foundations of
Computer Science, 150–159, 1995.

[Mat91] P. Matthews. Generating random linear extensions of a partial order, The Annals
of Probability, 19:1367–1392, 1991.

[Met53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.
Equation of state calculation by fast computing machines, Journal of Chemical
Physics, 21:1087–1092, 1953.

[Mih89a] M. Mihail. On coupling and the approximation of the permanent, Information
Processing Letters, 30:91–95, 1989.

518 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

[Mih89b] M. Mihail. Conductance and convergence of Markov chains: a combinatorial
treatment of expanders, Proceedings of the 30th Annual IEEE Symposium on
Foundations of Computer Science, 526–531, 1989.

[MP94] M. Mihail and C.H. Papadimitriou. On the random walk method for protocol test-
ing, Proceedings of the 6th International Conference on Computer Aided Verifi-
cation, Springer Lecture Notes in Computer Science 818, 1994, 132–141.

[MW91] M. Mihail and P. Winkler. On the number of Eulerian orientations of a graph,
Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
138–145, 1992.

[Mot89] R. Motwani. Expanding graphs and the average-case analysis of algorithms for
matchings and related problems, Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, ACM Press, 550–561, 1989.

[PW95] J. Propp and D. Wilson. Exact sampling with coupled Markov chains and appli-
cations to statistical mechanics (preprint), 1995. To appear in Random Structures
& Algorithms, 1996.

[RS94] D. Randall and A.J. Sinclair. Testable algorithms for self-avoiding walks, Pro-
ceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM
Press, 593–602, 1994.

[Rob35] J.K. Roberts. Some properties of adsorbed films of oxygen on tungsten, Proceed-
ings of the Royal Society of London A, 152:464–480, 1935.

[Sas91] G.H. Sasaki. The effect of the density of states on the Metropolis algorithm, In-
formation Processing Letters, 37:159–163, 1991.

[SH88] G.H. Sasaki and B. Hajek. The time complexity of maximum matching by simu-
lated annealing, Journal of the ACM, 35:387–403, 1988.

[Sin92] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicom-
modity flow, Combinatorics, Probability and Computing, 1:351–370, 1992.

[Sin93] A.J. Sinclair. Randomised algorithms for counting and generating combinatorial
structures, Advances in Theoretical Computer Science, Birkhäuser, Boston, 1993.

[SJ89] A.J. Sinclair and M.R. Jerrum. Approximate counting, uniform generation and
rapidly mixing Markov chains, Information and Computation, 82:93–133, 1989.

[SW87] R.H. Swendsen and J-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations, Physical Review Letters, 58:86–88, 1987.

[TF61] H.N.V. Temperley and M.E. Fisher. Dimer problem in statistical mechanics—an
exact result, Philosophical Magazine, 6:1061–1063, 1961.

[Tod89] S. Toda. On the computational power of PP and ⊕P, Proceedings of the 30th
Annual IEEE Symposium on Foundations of Computer Science, Computer Society
Press, 514–519, 1989.

[Usp37] J.V. Uspensky. Introduction to mathematical probability, McGraw Hill, 1937.

[Val79a] L.G. Valiant. The complexity of computing the permanent, Theoretical Computer
Science, 8:189–201, 1979.

[Val79b] L.G. Valiant. The complexity of enumeration and reliability problems, SIAM Jour-
nal on Computing, 8:410–421, 1979.

[Wel90] D.J.A. Welsh. The computational complexity of some classical problems from
statistical physics, Disorder in Physical Systems, Oxford University Press, 1990,
307–321.

APPENDIX 519

APPENDIX

Proof of Proposition 12.3. The proof essentially hinges on the bound
(Var fi)/(E fi)

2 ≤ e, which we established for the random variable f i . However, this ran-
dom variable is defined with respect to the distribution πλi , whereas our samples come
from a distribution π̂λi obtained from a finite-length simulation of the Markov chain,
whose variation distance from πλi satisfies

‖π̂λi −πλi‖ ≤
ε

5er
. (A.1)

We shall therefore work with the random variable f̂i , defined analogously to fi ex-
cept that the matching M is selected from the distribution π̂λi rather than πλi . Since f̂i

takes values in (0,1], its expectation E f̂i = ρ̂i clearly satisfies |ρ̂i −ρi | ≤ ε/5er , which
by (12.10) implies

(
1− ε

5r

)
ρi ≤ ρ̂i ≤

(
1+ ε

5r

)
ρi . (A.2)

Moreover, again using (12.10), the variance of f̂i satisfies

(Var f̂i)/(E f̂i)
2 ≤ ρ̂i

−1 ≤ 2ρ−1
i ≤ 2e, (A.3)

where we have also used (A.2) crudely to deduce that ρ̂i ≥ 1
2ρi .

We can now compute the sample size needed to ensure a good final estimate. Let
X (1)

i , . . . ,X (S)
i be a sequence of S independent copies of the random variable f̂i obtained

by sampling S matchings from the distribution π̂λi , and let X i = S−1∑S
j=1 X (j)

i be the
sample mean. Clearly, E X i = E f̂i = ρ̂i , and Var X i = S−1 Var f̂i . Our estimator of
ρ = Z (̂λ)−1 is the random variable X =∏r

i=1 X i . The expectation of this estimator is
E X =∏r

i=1 ρ̂i = ρ̂, which by (A.2) satisfies
(

1− ε
4

)
ρ ≤ ρ̂ ≤

(
1+ ε

4

)
ρ. (A.4)

Also, by (A.3), the variance satisfies

Var X

(E X)2
=

r∏

i=1

(
1+ Var X i

(E X i)2

)
−1

≤
(

1+ 2e

S

)r

−1

≤ exp(2er/S)−1

≤ ε2/64,

provided we choose the sample size S = d130eε−2re. (Here we are using the fact that
exp(x/65)≤ 1+ x/64 for 0≤ x ≤ 1.) Now Chebyshev’s inequality applied to X yields

Pr(|X − ρ̂|> (ε/4)ρ̂)≤ 16

ε2

Var X

(E X)2
≤ 1

4
,

520 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

so we have, with probability at least 3
4 ,

(
1− ε

4

)
ρ̂ ≤ X ≤

(
1+ ε

4

)
ρ̂. (A.5)

Combining (A.4) and (A.5) we see that, with probability at least 3
4 , Y = X−1 lies within

ratio 1± ε of ρ−1 = Z (̂λ), which completes the proof.

